首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1223篇
  免费   96篇
  2022年   8篇
  2021年   22篇
  2020年   9篇
  2019年   11篇
  2018年   13篇
  2017年   17篇
  2016年   21篇
  2015年   29篇
  2014年   44篇
  2013年   80篇
  2012年   77篇
  2011年   81篇
  2010年   59篇
  2009年   53篇
  2008年   88篇
  2007年   80篇
  2006年   78篇
  2005年   78篇
  2004年   70篇
  2003年   61篇
  2002年   71篇
  2001年   16篇
  2000年   12篇
  1999年   17篇
  1998年   19篇
  1997年   12篇
  1996年   10篇
  1995年   11篇
  1994年   15篇
  1993年   9篇
  1992年   12篇
  1991年   14篇
  1990年   8篇
  1989年   9篇
  1988年   7篇
  1987年   6篇
  1986年   7篇
  1985年   4篇
  1984年   14篇
  1983年   3篇
  1982年   8篇
  1981年   9篇
  1980年   6篇
  1979年   6篇
  1978年   5篇
  1976年   7篇
  1973年   4篇
  1972年   3篇
  1971年   3篇
  1970年   4篇
排序方式: 共有1319条查询结果,搜索用时 15 毫秒
101.
102.
Two Arabidopsis thaliana genes have been shown to function in vacuolar sorting of seed storage proteins: a vacuolar sorting receptor, VSR1/ATELP1, and a retromer component, MAIGO1 (MAG1)/VPS29. Here, we show an efficient and simple method for isolating vacuolar sorting mutants of Arabidopsis. The method was based on two findings in this study. First, VSR1 functioned as a sorting receptor for beta-conglycinin by recognizing the vacuolar targeting signal. Second, when green fluorescent protein (GFP) fusion with the signal (GFP-CT24) was expressed in vsr1, mag1/vps29, and wild-type seeds, both vsr1and mag1/vps29 gave strongly fluorescent seeds but the wild type did not, suggesting that a defect in vacuolar sorting provided fluorescent seeds by the secretion of GFP-CT24 out of the cells. We mutagenized transformant seeds expressing GFP-CT24. From approximately 3,000,000 lines of M2 seeds, we obtained >100 fluorescent seeds and designated them green fluorescent seed (gfs) mutants. We report 10 gfs mutants, all of which caused missorting of storage proteins. We mapped gfs1 to VSR1, gfs2 to KAM2/GRV2, gfs10 to the At4g35870 gene encoding a novel membrane protein, and the others to different loci. This method should provide valuable insights into the complex molecular mechanisms underlying vacuolar sorting of storage proteins.  相似文献   
103.
Identification of a free radical is performed for the reaction mixture of rat brain homogenate with a ferrous ion/ascorbic acid system using EPR, high performance liquid chromatography-electron paramagnetic resonance spectrometry (HPLC-EPR) and high performance liquid chromatography-electron paramagnetic resonance-mass spectrometry (HPLC-EPR-MS). EPR measurements of the reaction mixtures showed prominent signals with hyperfine coupling constants (alpha(N) = 1.58 mT and alpha(H)beta = 0.26 mT). No EPR spectrum was detectable without rat brain homogenate, suggesting that the radical is derived from rat brain homogenate. An HPLC-EPR analysis of the reaction mixture showed a peak with retention time of 33.7 min. An HPLC-EPR-MS analysis of the peak gave two ions at m/z 224 and 137, suggesting that alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN)/ethyl radical adduct forms in the reaction mixture.  相似文献   
104.
105.
Human UMP-CMP kinase is involved in the phosphorylation of nucleic acid precursors and also in the activation of antiviral analogues including cidofovir, an acyclic phosphonate compound that mimicks dCMP and shows a broad antiviral spectrum. The binding of ligands to the enzyme was here investigated using a fluorescent probe and a competitive titration assay. At the acceptor site, the enzyme was found to accommodate any base, purine and pyrimidine, including thymidine. A method for screening analogues based on their affinity for the UMP binding site was developed. The affinities of uracil vinylphosphonate derivatives modified in the 5 position were found similar to (d)UMP and (d)CMP and improved when compared to cidofovir.  相似文献   
106.
With the commercial availability of well-defined ruthenium metathesis catalysts which combine high stability and broad functional group compatibility, olefin metathesis is now routinely integrated in various syntheses. We will report here the overwhelming power and scope of cross-metathesis in the area of new acyclic nucleoside phosphonates. Scope and limitations of this approach, and especially the E/Z stereocontrol, are discussed on selected examples from our drug discovery group.  相似文献   
107.
Three strains TKU9, TKU49 and TKU50T, were isolated from the oral cavities of chimpanzees (Pan troglodytes). The isolates were all gram‐positive, facultative anaerobic cocci that lacked catalase activity. Analysis of partial 16S rRNA gene sequences showed that the most closely related species was Streptococcus infantis (96.7%). The next most closely related species to the isolates were S. rubneri, S. mitis, S. peroris and S. australis (96.6 to 96.4%). Based on the rpoB and gyrB gene sequences, TKU50T was clustered with other member of the mitis group. Enzyme activity and sugar fermentation patterns differentiated this novel bacterium from other members of the mitis group streptococci. The DNA G + C content of strain TKU50T was 46.7 mol%, which is the highest reported value for members of the mitis group (40–46 mol%). On the basis of the phenotypic characterization, partial 16S rRNA gene and sequences data for two housekeeping gene (gyrB and rpoB), we propose a novel taxa, S. panodentis for TKU 50T (type strain = CM 30579T = DSM 29921T), for these newly described isolates.  相似文献   
108.
Water‐insoluble glucan (WIG) produced by mutans streptococci, an important cariogenic pathogen, plays an important role in the formation of dental biofilm and adhesion of biofilm to tooth surfaces. Glucanohydrolases, such as mutanase (α‐1,3‐glucanase) and dextranase (α‐1,6‐glucanase), are able to hydrolyze WIG. The purposes of this study were to construct bi‐functional chimeric glucanase, composed of mutanase and dextranase, and to examine the effects of this chimeric glucanase on the formation and decomposition of biofilm. The mutanase gene from Paenibacillus humicus NA1123 and the dextranase gene from Streptococcus mutans ATCC 25175 were cloned and ligated into a pE‐SUMOstar Amp plasmid vector. The resultant his‐tagged fusion chimeric glucanase was expressed in Escherichia coli BL21 (DE3) and partially purified. The effects of chimeric glucanase on the formation and decomposition of biofilm formed on a glass surface by Streptococcus sobrinus 6715 glucosyltransferases were then examined. This biofilm was fractionated into firmly adherent, loosely adherent, and non‐adherent WIG fractions. Amounts of WIG in each fraction were determined by a phenol‐sulfuric acid method, and reducing sugars were quantified by the Somogyi–Nelson method. Chimeric glucanase reduced the formation of the total amount of WIG in a dose‐dependent manner, and significant reductions of WIG in the adherent fraction were observed. Moreover, the chimeric glucanase was able to decompose biofilm, being 4.1 times more effective at glucan inhibition of biofilm formation than a mixture of dextranase and mutanase. These results suggest that the chimeric glucanase is useful for prevention of dental biofilm formation.  相似文献   
109.
The discovery and structure-activity relationship of a novel series of indole-2-carboxamide antagonists of the cannabinoid CB(1) receptor is disclosed. Compound 26i was found to be a high potency, selective cannabinoid CB(1) antagonist.  相似文献   
110.
In the opportunistic fungal pathogen Candida albicans, up-regulation of MDR1, encoding an efflux transporter, leads to increased resistance to the antifungal drug fluconazole. Antifungal resistance has been linked to several types of genetic change in C. albicans, including changes in genome structure, genetic alteration of the drug target, and overexpression of transporters. High-level over-expression of MDR1 is commonly mediated by mutation in a trans-acting factor, Mrr1p. This report describes a second mechanism that contributes to up-regulation of MDR1 expression. By analyzing the sequence of the MDR1 promoter region in fluconazole-resistant and fluconazole-susceptible strains, we identified sequence polymorphisms that defined two linkage groups, corresponding to the two alleles in the diploid genome. One of the alleles conferred higher MDR1 expression compared with the other allele. Strains in which both alleles were of the higher activity type were common in collections of clinically isolated strains while strains carrying only the less active allele were rare. As increased expression of MDR1 confers higher resistance to drugs, strains with the more active MDR1 promoter allele may grow or survive longer when exposed to drugs or other selective pressures, providing greater opportunity for mutations that confer high-level drug resistance to arise. Through this mechanism, higher activity alleles of the MDR1 promoter could promote the development of drug resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号