首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1069篇
  免费   70篇
  2022年   8篇
  2021年   20篇
  2020年   8篇
  2019年   11篇
  2018年   12篇
  2017年   14篇
  2016年   17篇
  2015年   24篇
  2014年   40篇
  2013年   66篇
  2012年   71篇
  2011年   74篇
  2010年   49篇
  2009年   45篇
  2008年   76篇
  2007年   70篇
  2006年   71篇
  2005年   71篇
  2004年   68篇
  2003年   55篇
  2002年   65篇
  2001年   11篇
  2000年   6篇
  1999年   10篇
  1998年   16篇
  1997年   12篇
  1996年   7篇
  1995年   8篇
  1994年   13篇
  1993年   6篇
  1992年   9篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   7篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   14篇
  1983年   7篇
  1982年   10篇
  1981年   10篇
  1980年   8篇
  1979年   5篇
  1978年   3篇
  1976年   3篇
  1973年   2篇
  1972年   3篇
  1970年   2篇
  1966年   2篇
排序方式: 共有1139条查询结果,搜索用时 15 毫秒
131.
Engagement of the FcepsilonRI expressed on mast cells induces the production of phosphatidylinositol 3, 4, 5-trisphosphate by PI3K, which is essential for the functions of the cells. PTEN (phosphatase and tensin homologue deleted on chromosome ten) directly opposes PI3K by dephosphorylating phosphatidylinositol 3, 4, 5-trisphosphate at the 3' position. In this work we used a lentivirus-mediated short hairpin RNA gene knockdown method to study the role of PTEN in CD34(+) peripheral blood-derived human mast cells. Loss of PTEN caused constitutive phosphorylation of Akt, p38 MAPK, and JNK, as well as cytokine production and enhancement in cell survival, but not degranulation. FcepsilonRI engagement of PTEN-deficient cells augmented signaling downstream of Src kinases and increased calcium flux, degranulation, and further enhanced cytokine production. PTEN-deficient cells, but not control cells, were resistant to inhibition of cytokine production by wortmannin, a PI3K inhibitor. The findings demonstrate that PTEN functions as a key regulator of mast cell homeostasis and FcepsilonRI-responsiveness.  相似文献   
132.
Members of the EGF-CFC family facilitate signaling by a subset of TGFbeta superfamily ligands that includes the nodal-related factors and GDF1/VG1. Studies in mouse, zebrafish, and chick point to an essential role for EGF-CFC proteins in the action of nodal/GDF1 signals in the early establishment of the mesendoderm and later visceral left-right patterning. Antisense knockdown of the only known frog EGF-CFC factor (FRL1), however, has argued against an essential role for this factor in nodal/GDF1 signaling. To address this apparent paradox, we have identified two additional Xenopus EGF-CFC family members. The three Xenopus EGF-CFC factors show distinct patterns of expression. We have examined the role of XCR2, the only Xenopus EGF-CFC factor expressed in post-gastrula embryos, in embryogenesis. Antisense morpholino oligonucleotide-mediated depletion of XCR2 disrupts left-right asymmetry of the heart and gut. Although XCR2 is expressed bilaterally at neurula stage, XCR2 is required on the left side, but not the right side, for normal left-right patterning. Left-side expression of XNR1 in the lateral plate mesoderm depends on XCR2, whereas posterior bilateral expression of XNR1 does not, suggesting that distinct mechanisms maintain XNR1 expression in different regions of neurula-tailbud embryos. Ectopic XCR2 on the right side initiates premature right-side expression of XNR1 and XATV, and can reverse visceral patterning. This activity of XCR2 depends on its co-receptor function. These observations indicate that XCR2 has a crucial limiting role in maintaining a bistable asymmetry in nodal family signaling across the left-right axis.  相似文献   
133.
The model bryophyte Physcomitrella patens exhibits high frequencies of gene targeting when transformed with DNA constructs containing sequences homologous with genomic loci. ‘Targeted gene replacement’ (TGR) resulting from homologous recombination (HR) between each end of a targeting construct and the targeted locus occurs when either single or multiple targeting vectors are delivered. In the latter instance simultaneous, multiple, independent integration of different transgenes occurs at the targeted loci. In both single gene and ‘batch’ transformations, DNA can also be found to undergo ‘targeted insertion’ (TI), integrating at one end of the targeted locus by HR with one flanking sequence of the vector accompanied by an apparent non-homologous end-joining (NHEJ) event at the other. Untargeted integration at nonhomologous sites also occurs, but at a lower frequency. Molecular analysis of TI at a single locus shows that this occurs as a consequence of concatenation of the transforming DNA, in planta, prior to integration, followed by HR between a single site in the genomic target and two of its repeated homologues in the concatenated vector. This reinforces the view that HR is the major pathway by which transforming DNA is integrated in Physcomitrella.  相似文献   
134.
The LolCDE complex, an ATP-binding cassette (ABC) transporter, releases lipoproteins from the inner membrane, thereby initiating lipoprotein sorting to the outer membrane of Escherichia coli. The LolCDE complex is composed of two copies of an ATPase subunit, LolD, and one copy each of integral membrane subunits LolC and LolE. LolD hydrolyzes ATP on the cytoplasmic side of the inner membrane, while LolC and/or LolE recognize and release lipoproteins anchored to the periplasmic leaflet of the inner membrane. Thus, functional interaction between LolD and LolC/E is critically important for coupling of ATP hydrolysis to the lipoprotein release reaction. LolD contains a characteristic sequence called the LolD motif, which is highly conserved among LolD homologs but not other ABC transporters of E. coli. The LolD motif is suggested to be a region in contact with LolC/E, judging from the crystal structures of other ABC transporters. To determine the functions of the LolD motif, we mutagenized each of the 32 residues of the LolD motif and isolated 26 dominant-negative mutants, whose overexpression arrested growth despite the chromosomal lolD(+) background. We then selected suppressor mutations of the lolC and lolE genes that correct the growth defect caused by the LolD mutations. Mutations of the lolC suppressors were mainly located in the periplasmic loop, whereas ones of lolE suppressors were mainly located in the cytoplasmic loop, suggesting that the mode of interaction with LolD differs between LolC and LolE. Moreover, the LolD motif was found to be critical for functional interplay with LolC/E, since some LolD mutations lowered the ATPase activity of LolCDE without affecting that of LolD.  相似文献   
135.
Carboxysomes in rapidly frozen ice-embedded whole cells of the cyanobacterium Synechococcus sp. strain PCC 7942 were visualized by the recently developed Hilbert differential contrast transmission electron microscope. Structural details of carboxysomes were especially clearly visualized in the ruptured cells. The novel electron microscopy exhibited the paracrystalline arrays of molecules of the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase in the carboxysomes in much better contrast than conventional transmission electron microscopy with ultrathin sections of cells. The carboxysome was surrounded by a 5- to 6-nm-thick monolayer shell which consisted of orderly arrays of globular particles.  相似文献   
136.
Engagement of the high affinity receptor for IgE (FcepsilonRI) on mast cells results in the production and secretion of sphingosine 1-phosphate (S1P), a lipid metabolite present in the lungs of allergen-challenged asthmatics. Herein we report that two isoforms of sphingosine kinase (SphK1 and SphK2) are expressed and activated upon FcepsilonRI engagement of bone marrow-derived mast cells (BMMC). Fyn kinase is required for FcepsilonRI coupling to SphK1 and -2 and for subsequent S1P production. Normal activation of SphK1 and -2 was restored by expression of wild type Fyn but only partly with a kinase-defective Fyn, indicating that induction of SphK1 and SphK2 depended on both catalytic and noncatalytic properties of Fyn. Downstream of Fyn, the requirements for SphK1 activation differed from that of SphK2. Whereas SphK1 was considerably dependent on the adapter Grb2-associated binder 2 and phosphatidylinositol 3-OH kinase, SphK2 showed minimal dependence on these molecules. Fyn-deficient BMMC were defective in chemotaxis and, as previously reported, in degranulation. These functional responses were partly reconstituted by the addition of exogenous S1P to FcepsilonRI-stimulated cells. Taken together with our previous study, which demonstrated delayed SphK activation in Lyn-deficient BMMC, we propose a cooperative role between Fyn and Lyn kinases in the activation of SphKs, which contributes to mast cell responses.  相似文献   
137.
We previously found that phosphatidylglucoside (PtdGlc), a novel glycolipid expressed in HL60 cells, plays a role in forming signaling microdomains involved in cellular differentiation. Because cells contain minute levels of PtdGlc, pure PtdGlc is very difficult to isolate. Thus, its complete structure has never been assessed. To aid in analyzing PtdGlc, we generated a PtdGlc-specific monoclonal antibody, DIM21, by immunizing mice with detergent-insoluble membranes isolated from HL60 cells [Yamazaki, Y., et al. (2006) J. Immunol. Methods 311, 106-116]. DIM21 immunostaining of murine CNS tissues revealed stage- and cell type-specific localization of the DIM21 antigen during development, with especially high levels of expression in radial glia/astroglia. DIM21 immunostained cultured hippocampal astroglia in a punctate fashion. To characterize the structure of PtdGlc, we isolated DIM21 antigen from fetal brains. Using successive column chromatography, we purified two previously unrecognized glycolipids, PGX-1 and PGX-2, from embryonic day 21 rat brains. DIM21 reacted more strongly to PGX-2 than to PGX-1. Structural analyses with 600 MHz (1)H NMR, FT-ICR mass spectrometry, and GC revealed that PGX-1 is phosphatidyl beta-d-(6-O-acetyl)glucopyranoside and PGX-2 is phosphatidyl beta-d-glucopyranoside. The yields of PGX-1 and PGX-2 were approximately 250 +/- 150 and 440 +/- 270 nmol/g of dried brains, respectively. Surprisingly, both glycolipids were composed exclusively of C18:0 at the C1 position and C20:0 at the C2 position of the glycerol backbone. This saturated fatty acyl chain composition comprising a single molecular species rarely occurs in known mammalian lipids and provides a molecular basis for why PtdGlc resides in raftlike lipid microdomains.  相似文献   
138.
HEK293 cells were transfected with cDNAs for Gbeta1(W332A) [a mutant Gbeta1], Ggamma2, and inward rectifier K+ channels (Kir3.1/Kir3.2). Application of Gbeta1gamma2 protein to these cells activated the K+ channels only slightly. When mu-opioid receptors and Kir3.1/Kir3.2 were transfected, application of a mu-opioid agonist induced a Kir3 current. However, co-expression of Gbeta1(W332A) suppressed this current. Most likely, Gbeta1(W332A) inhibited the action of the endogenous Gbeta. Such a dominant negative effect of Gbeta1(W332A) was also observed in neuronal Kir3 channels in locus coeruleus. The mutant, Gbeta1(W332A) protein, although inactive, retains its ability to bind Kir3 and prevents the wild type Gbeta from activating the channel.  相似文献   
139.
The moss Physcomitrella patens is unique among plant models for the high frequency with which targeted transgene insertion occurs via homologous recombination. Transgene integration is believed to utilize existing machinery for the detection and repair of DNA double-strand breaks (DSBs). We undertook targeted knockout of the Physcomitrella genes encoding components of the principal sensor of DNA DSBs, the MRN complex. Loss of function of PpMRE11 or PpRAD50 strongly and specifically inhibited gene targeting, whilst rates of untargeted transgene integration were relatively unaffected. In contrast, disruption of the PpNBS1 gene retained the wild-type capacity to integrate transforming DNA efficiently at homologous loci. Analysis of the kinetics of DNA-DSB repair in wild-type and mutant plants by single-nucleus agarose gel electrophoresis revealed that bleomycin-induced fragmentation of genomic DNA was repaired at approximately equal rates in each genotype, although both the Ppmre11 and Pprad50 mutants exhibited severely restricted growth and development and enhanced sensitivity to UV-B and bleomycin-induced DNA damage, compared with wild-type and Ppnbs1 plants. This implies that while extensive DNA repair can occur in the absence of a functional MRN complex; this is unsupervised in nature and results in the accumulation of deleterious mutations incompatible with normal growth and development.  相似文献   
140.
Methionine sulfoxide reductase B (MsrB) is an enzyme that repairs oxidatively damaged proteins by specifically reducing methionine-R-sulfoxide back to methionine. Three MsrBs, localized in different cellular compartments, are expressed in mammals. However, the physiological roles of each MsrB with regard to its location remain poorly understood. Here, we expressed endoplasmic reticulum (ER)-targeted human MsrB3A (hMsrB3A) in Drosophila and examined its effects on various phenotypes. In two independent transgenic lines, both ubiquitous and neuronal expression of hMsrB3A rendered flies resistant to oxidative stress. Interestingly, these flies also showed significantly enhanced cold and heat tolerance. More strikingly, expression of hMsrB3A in the whole body and nervous system extended the lifespan of fruit flies at 29 °C by 43-50% and 12-37%, respectively, suggesting that the targeted expression of MsrB in the ER regulates Drosophila lifespan. A significant increase in lifespan was also observed at 25 °C only when hMsrB3A was expressed in neurons. Additionally, hMsrB3A overexpression significantly delayed the age-related decline in locomotor activity and fecundity. Taken together, our data provide evidence that the ER type of MsrB, MsrB3A, plays an important role in protection mechanisms against oxidative, cold and heat stresses and, moreover, in the regulation of fruit fly aging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号