首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1075篇
  免费   72篇
  1147篇
  2023年   2篇
  2022年   8篇
  2021年   21篇
  2020年   9篇
  2019年   14篇
  2018年   14篇
  2017年   15篇
  2016年   21篇
  2015年   25篇
  2014年   43篇
  2013年   67篇
  2012年   73篇
  2011年   77篇
  2010年   49篇
  2009年   45篇
  2008年   79篇
  2007年   72篇
  2006年   74篇
  2005年   70篇
  2004年   69篇
  2003年   58篇
  2002年   67篇
  2001年   13篇
  2000年   7篇
  1999年   9篇
  1998年   16篇
  1997年   13篇
  1996年   7篇
  1995年   8篇
  1994年   13篇
  1993年   6篇
  1992年   7篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1984年   12篇
  1983年   3篇
  1982年   8篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1978年   3篇
  1976年   2篇
  1971年   1篇
  1970年   2篇
  1967年   1篇
  1961年   1篇
排序方式: 共有1147条查询结果,搜索用时 15 毫秒
91.
The effect of fasting on calcium content and Ca2+-ATPase activity in the brain tissues of 5 weeks and 50 weeks old rats was investigated. Brain calcium content and Ca2+-ATPase activity in the microsomal and mitochondrial fractions of the brain homogenate from young and elderly rats were significantly increased by overnight–fasting. These increases were appreciably restored by a single oral administration of glucose solution (400 mg/100 g body weight) to fasted rats. In comparison with young and elderly rats, brain calcium content and microsomal Ca2+-ATPase activity were significantly elevated by increasing ages. The effect of ageing was not seen in the brain mitochondrial Ca2+-ATPase activity. When calcium (50 mg/100 g) was orally administered to young and elderly rats, brain calcium content was significantly elevated. The calcium administration–induced increase in brain calcium content was greater in elderly r crease in Ca2+-ATPase activity in the microsomal and mitochondrial fractions of brain homogenates from young rats. In aged rats, the microsomal Ca2+-ATPase activity was not further enhanced by calcium administration, although the mitochondrial enzyme activity was significantly raised. The present study demonstrates that the fasting–induced increase in brain calcium content is involved in Ca2+-ATPase activity raised in the brain microsomes and mitochondria of rats with different ages, supporting a energy–dependent mechanism in brain calcium accumulation.  相似文献   
92.
HEK293 cells were transfected with cDNAs for Gbeta1(W332A) [a mutant Gbeta1], Ggamma2, and inward rectifier K+ channels (Kir3.1/Kir3.2). Application of Gbeta1gamma2 protein to these cells activated the K+ channels only slightly. When mu-opioid receptors and Kir3.1/Kir3.2 were transfected, application of a mu-opioid agonist induced a Kir3 current. However, co-expression of Gbeta1(W332A) suppressed this current. Most likely, Gbeta1(W332A) inhibited the action of the endogenous Gbeta. Such a dominant negative effect of Gbeta1(W332A) was also observed in neuronal Kir3 channels in locus coeruleus. The mutant, Gbeta1(W332A) protein, although inactive, retains its ability to bind Kir3 and prevents the wild type Gbeta from activating the channel.  相似文献   
93.
The adherence of Haemophilus influenzae to epithelial cells plays a crucial role in infections. However, little is known about the occurrence of fimbriae. In this study, we examined the distribution of the fimbria gene (hifA) by PCR among 167 H. influenzae strains isolated from patients with respiratory infections. Almost all (163; 98%) of the isolates were nonencapsulated strains. The carriage rate of hifA by the nonencapsulated strains was 18.4%. Electron microscopy showed that fimbriae were abundantly present on the cell surface of hifA-positive strains tested. Only four (2.4%) isolates were encapsulated, all of which were type b and did not possess hifA. The present work suggests that fimbriae may play a considerable role as adhesins in nonencapsulated H. influenzae strains.  相似文献   
94.
Summary The entire chloroplast genome of the monocot rice (Oryza sativa) has been sequenced and comprises 134525 bp. Predicted genes have been identified along with open reading frames (ORFs) conserved between rice and the previously sequenced chloroplast genomes, a dicot, tobacco (Nicotiana tabacum), and a liverwort (Marchantia polymorpha). The same complement of 30 tRNA and 4 rRNA genes has been conserved between rice and tobacco. Most ORFs extensively conserved betweenN. tabacum andM. polymorpha are also conserved intact in rice. However, several such ORFs are entirely absent in rice, or present only in severely truncated form. Structural changes are also apparent in the genome relative to tobacco. The inverted repeats, characteristic of chloroplast genome structure, have expanded outward to include several genes present only once per genome in tobacco and liverwort and the large single copy region has undergone a series of inversions which predate the divergence of the cereals. A chimeric tRNA pseudogene overlaps an apparent endpoint of the largest inversion, and a model invoking illegitimate recombination between tRNA genes is proposed which accounts simultaneously for the origin of this pseudogene, the large inversion and the creation of repeated sequences near the inversion endpoints.  相似文献   
95.
Potomac horse fever is known to be transmitted through the ingestion of caddisflies parasitized with Neorickettsia (formerly Ehrlichia) risticii-infected metacercaria. However, the species of trematode involved and how N. risticii is maintained in nature are unknown. In this study, gravid trematodes were recovered from the intestines of 12 out of 15 Eptesicus fuscus big brown bats and eight out of nine Myotis lucifugus little brown bats from various sites in Pennsylvania, USA. Trematode specimens isolated from six E. fuscus bats contained N. risticii DNA. The trematode was identified as Acanthatrium oregonense. N. risticii was detected within individual trematode eggs by polymerase chain reaction as well as by immunofluorescence labelling with an anti-N. risticii antibody, indicating that N. risticii is vertically transmitted (from adult to egg) in A. oregonense. Furthermore, N. risticii DNA was detected in the blood, liver or spleen of 23 out of 53 E. fuscus and M. lucifugus bats, suggesting that N. risticii can also be transmitted horizontally from trematode to bat. These results indicate that A. oregonense is a natural reservoir and probably a vector of N. risticii.  相似文献   
96.
Effects of irradiance on changes in the amounts of chlorophyll(Chl) and light-harvesting chlorophyll a/b protein of PS II(LHCII) were examined in senescing leaves of rice (Oryza sativaL.). Results of treatments at two irradiances (100% and 20%natural sunlight) were examined after the full expansion ofthe 13th leaf throughout the course of senescence. With 20%sunlight, the Chl content decreased only a little during leafsenescence, while with 100% sunlight it decreased appreciably.Similarly, the amount of LHCII protein during treatment with20% sunlight remained almost constant. However, the ratio ofChl a/b during the shade treatment decreased significantly andthe rate of decrease was greater than during the full-sunlighttreatment. The ratio of Chl a/b for Chl a and b bound to LHCIIwas about 1.2, irrespective of leaf age or irradiance treatment.When the amounts of Chl bound to LHCII were calculated fromthe total leaf content of Chl and the ratio of Chl a/b, assuminga ratio of Chl a/b bound to LHCII of 1.2, they were well correlatedwith the amounts of LHCII protein. Changes in the amounts of LHCII synthesized during the two irradiancetreatments were examined using an 15 tracer. Incorporation of15N into LHCII declined dramatically during both treatmentsfrom full expansion through senescence, suggesting that therewas little synthesis of LHCII protein during that time. In addition,the amount of LHCII synthesized during senescence was lowerduring the shade treatment than during the 100% sunlight treatment.These results indicate that the absence of an apparent changein levels of LHCII with shade treatment during senescence wascaused by the very low rate of turnover of LHCII protein. (Received June 17, 1992; Accepted September 28, 1992)  相似文献   
97.
Plastids, found in plants and some parasites, are of endosymbiotic origin. The best-characterized plastid is the plant cell chloroplast. Plastids provide essential metabolic and signaling functions, such as the photosynthetic process in chloroplasts. However, the role of plastids is not limited to production of metabolites. Plastids affect numerous aspects of plant growth and development through biogenesis, varying functional states and metabolic activities. Examples include, but are not limited to, embryogenesis, leaf development, gravitropism, temperature response and plant-microbe interactions. In this review, we summarize the versatile roles of plastids in plant growth and development.  相似文献   
98.
GCN2 is the alpha-subunit of the only translation initiation factor (eIF2alpha) kinase that appears in all eukaryotes. Its function requires an interaction with GCN1 via the domain at its N-terminus, which is termed the RWD domain after three major RWD-containing proteins: RING finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD (DEXD)-like helicases. In this study, we determined the solution structure of the mouse GCN2 RWD domain using NMR spectroscopy. The structure forms an alpha + beta sandwich fold consisting of two layers: a four-stranded antiparallel beta-sheet, and three side-by-side alpha-helices, with an alphabetabetabetabetaalphaalpha topology. A characteristic YPXXXP motif, which always occurs in RWD domains, forms a stable loop including three consecutive beta-turns that overlap with each other by two residues (triple beta-turn). As putative binding sites with GCN1, a structure-based alignment allowed the identification of several surface residues in alpha-helix 3 that are characteristic of the GCN2 RWD domains. Despite the apparent absence of sequence similarity, the RWD structure significantly resembles that of ubiquitin-conjugating enzymes (E2s), with most of the structural differences in the region connecting beta-strand 4 and alpha-helix 3. The structural architecture, including the triple beta-turn, is fundamentally common among various RWD domains and E2s, but most of the surface residues on the structure vary. Thus, it appears that the RWD domain is a novel structural domain for protein-binding that plays specific roles in individual RWD-containing proteins.  相似文献   
99.
The eukaryotic 20S proteasome is the multifunctional catalytic core of the 26S proteasome, which plays a central role in intracellular protein degradation. Association of the 20S core with a regulatory subcomplex, termed PA700 (also known as the 19S cap), forms the 26S proteasome, which degrades ubiquitinated and nonubiquitinated proteins through an ATP-dependent process. Although proteolytic assistance by this regulatory particle is a general feature of proteasome-dependent turnover, the 20S proteasome itself can degrade some proteins directly, bypassing ubiquitination and PA700, as an alternative mechanism in vitro. The mechanism underlying this pathway is based on the ability of the 20S proteasome to recognize partially unfolded proteins. Here we show that the 20S proteasome recognizes the heat-denatured forms of model proteins such as citrate synthase, malate dehydrogenase. and glyceraldehydes-3-phosphate dehydrogenase, and prevents their aggregation in vitro. This process was not followed by the refolding of these denatured substrates into their native states, whereas PA700 or the 26S proteasome generally promotes their reactivation. These results indicate that the 20S proteasome might play a role in maintaining denatured and misfolded substrates in a soluble state, thereby facilitating their refolding or degradation.  相似文献   
100.
Cysteine synthase catalyzes the formation of cysteine from O-acetylserine, and is the key enzyme for de novo cysteine biosynthesis in Schizosaccharomyces pombe. An examination of the S. pombe database revealed that two gene products are predicted to encode proteins homologous to eukaryotic cysteine synthases. Disruption of one of these candidates, cys1a+ (SPBC36.04), caused an obvious cysteine auxotrophy, while disruption of cys1b+ (SPAC3A12.17c) had no effect on the growth phenotype. Furthermore, overexpression of cys1b+ did not complement the cysteine auxotrophic phenotype of cys1a mutant cells. These results indicated that cys1a+, not cys1b+, primarily functions in the biosynthesis of cysteine in S. pombe cells. We constructed a bacterial-S. pombe shuttle vector containing cys1a+ as a selective marker gene. The combination of the cysteine auxotroph and new vector could be useful for the expression of a heterologous protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号