首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1031篇
  免费   69篇
  2022年   8篇
  2021年   20篇
  2020年   8篇
  2019年   11篇
  2018年   12篇
  2017年   14篇
  2016年   17篇
  2015年   24篇
  2014年   40篇
  2013年   65篇
  2012年   71篇
  2011年   74篇
  2010年   49篇
  2009年   45篇
  2008年   76篇
  2007年   70篇
  2006年   71篇
  2005年   69篇
  2004年   65篇
  2003年   55篇
  2002年   65篇
  2001年   11篇
  2000年   6篇
  1999年   8篇
  1998年   16篇
  1997年   12篇
  1996年   7篇
  1995年   8篇
  1994年   13篇
  1993年   6篇
  1992年   7篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1984年   12篇
  1983年   3篇
  1982年   8篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1978年   3篇
  1976年   2篇
  1973年   1篇
  1971年   1篇
  1970年   2篇
  1967年   1篇
  1961年   1篇
排序方式: 共有1100条查询结果,搜索用时 31 毫秒
111.
1H NMR spectra of G1-alpha-CD and G1-beta-CD were recorded using a spectrometer equipped with a 21.6 T magnet. An ultra-high magnetic field was effective for detecting 1H NMR signals with a small difference in chemical shifts. Introducing a glucosyl group onto CDs as a branch caused deformation of equilibrated 1H signals of cyclodextrin. Particularly, 1H signals in branched glucose were shifted greatly.  相似文献   
112.
Adiponectin, an adipocyte-derived hormone, reportedly suppresses the production of TNF-alpha and IL-6 by LPS-stimulated human or porcine macrophages, and the phagocytosis of microbeads by human macrophages. In this study, we used a high molecular weight form of adiponectin purified from human plasma to examine its effects on the phagocytosis of late apoptotic cells by human macrophages and the subsequent IL-8 production. Adiponectin suppressed both the phagocytosis of apoptotic cells and the IL-8 production. In contrast, adiponectin augmented both the phagocytosis of apoptotic cells and the IL-8 production in the presence of LPS. These results suggest that adiponectin is not an anti-inflammatory hormone but rather a dual modulator of innate responses.  相似文献   
113.
Nitta K  Suzuki N  Honma D  Kaneko Y  Nakamoto H 《FEBS letters》2005,579(5):1235-1242
The role and sub-cellular localization of the small heat shock protein HspA under stress conditions was investigated comparing the cyanobacterium Synechococcus strain ECT16-1, which constitutively expresses HspA, with the reference strain ECT. The ultrastructure of ECT cells under elevated temperature or intensive light stress exhibited severe damage including aggregation of cytosol and disordered thylakoid membranes, but in ECT16-1 cells these ultrastructural changes were much less conspicuous. Immunocytochemical studies showed that the main localization of HspA in the ECT16-1 cells shifted from the thylakoid area to the cytoplasm, then back to thylakoid area during the heat stress. Expression of HspA stabilized the morphology of nucleoids. The results are discussed, in particular with respect to the unique property of HspA to associate with thylakoid membranes.  相似文献   
114.
Methyl mercaptan is derived from l-methionine by the action of l-methionine-alpha-deamino-gamma-mercaptomethane lyase (METase) and is a major component of oral malodor. This compound is highly toxic and is thought to play an important role in periodontal disease. We found that Treponema denticola, a member of the subgingival biofilm at periodontal disease sites, produced a large amount of methyl mercaptan even at low concentration of l-methionine. METase activity in a cell-free extract from T. denticola was detected by two-dimensional electrophoresis under non-denaturing conditions, and the protein spot that exhibited high METase activity was identified using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer. The identified gene produced a METase with a K(m) value for l-methionine (0.55mM) that is much lower than those of METases previously identified in the other organisms. This result suggests that T. denticola is an important producer of methyl mercaptan in the subgingival biofilm.  相似文献   
115.
Usui M  Shimizu T  Goto Y  Saito A  Kato A 《FEBS letters》2004,557(1-3):169-173
Various mutant lysozymes were constructed by genetic modification and secreted in yeast expression system to evaluate the changes in the antigenicity of hen egg lysozyme (HEL). Although Arg68, the most critical residue to antigenicity of HEL, was substituted with Gln, the binding of monoclonal antibodies (mAbs) with the mutant lysozyme did not critically reduce, remaining 60% of the binding with mAb. In contrast, glycosylated mutant lysozyme G49N whose glycine was substituted with asparagine dramatically reduced the binding with mAb. The oligomannosyl type of G49N lysozyme reduced binding with mAb to one-fifth, while the polymannosyl type of G49N lysozyme completely diminished the binding with mAb. This suggests that the site-specific glycosylation of lysozyme in the interfacial region of lysozyme-antibody complex is more effective to reduce the antigenicity than the mutation of single amino acid substitution in the interfacial region.  相似文献   
116.
117.
We examined the effects of recombinant human C-reactive protein (rhCRP) on atherosclerosis-related factors in cultured human coronary artery endothelial and smooth muscle cells (HCAECs and HCASMCs). After removing endotoxin from commercial rhCRP preparations using the appropriate column, the purified (P)-rhCRP retained the ability to Ca(2+)-dependently bind to phosphorylcholine, but did not augment the secretion of interleukin-6 and MCP-1 from HCAECs, as non-purified (NP)-rhCRP did. By contrast, P-rhCRP elicited 2- to 3-fold increases in the secretion of both hormones from HCASMCs, though the effect was smaller than that obtained with NP-rhCRP. Production of PAI-1 and endothelin-1 was little affected by either rhCRP preparation in either cell type. In addition, P-rhCRP dose-dependently diminished adrenomedullin release from both cell types, but did not affect adrenomedullin receptor expression or function. Our findings highlight the importance of removing endotoxin from commercial rCRP preparations and show that hCRP elicits atherogenic responses from HCASMCs, but not HCAECs.  相似文献   
118.
Anaplasma (formerly Ehrlichia) phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia) sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens.  相似文献   
119.
Kondo Y  Kondo S 《Autophagy》2006,2(2):85-90
Autophagy is a dynamic process of protein degradation, which is typically observed during nutrient deprivation. Recently, interest in autophagy has been renewed among oncologists, because different types of cancer cells undergo autophagy after various anticancer therapies. This type of nonapoptotic cell death has been documented mainly by observing morphological changes, e.g., numerous autophagic vacuoles in the cytoplasm of dying cells. Thus, autophagic cell death is considered programmed cell death type II, whereas apoptosis is programmed cell death type I. These two types of cell death are predominantly distinctive, but many studies demonstrate cross-talk between them. Whether autophagy in cancer cells causes death or protects cells is controversial. In multiple studies, autophagy has been inhibited pharmacologically or genetically, resulting in contrasting outcomes--survival or death--depending on the specific context. Interestingly, the regulatory pathways of autophagy share several molecules with the oncogenic pathways activated by tyrosine kinase receptors. Tumor suppressors such as Beclin 1, PTEN and p53 also play an important role in autophagy induction. Taken together, these accumulating data may lead to development of new cancer therapies that manipulate autophagy.  相似文献   
120.
Human immunodeficiency virus (HIV) gp41 plays a key role in viral fusion; the N- and C-terminal heptad repeats (N-HR and C-HR) of gp41 form a stable 6-helical conformation for fusion. Therefore, HR-derived peptides, such as enfuvirtide (T-20), inhibit HIV-1 fusion by acting as decoys, and have been used for the treatment of HIV-1 infection. However, the efficacy of T-20 is attenuated by resistance mutations in gp41, including V38A and N43D. To suppress the resistant variants, we previously developed electrostatically constrained peptides, SC34 and SC34EK, and showed that both exhibited potent anti-HIV-1 activity against wild-type and T-20-resistant variants. In this study, to clarify the resistance mechanism to this next generation of fusion inhibitors, we selected variants with resistance to SC34 and SC34EK in vitro. The resistant variants had multiple mutations in gp41. All of these mutations individually caused less than 6-fold resistance to SC34 and SC34EK, indicating that there is a significant genetic barrier for high-level resistance. Cross-resistance to SC34 and SC34EK was reduced by a simple difference in the polarity of two intramolecular electrostatic pairs. Furthermore, the selected mutations enhanced the physicochemical interactions with N-HR variants and restored activities of the parental peptide, C34, even to resistant variants. These results demonstrate that our approach of designing gp41-binding inhibitors using electrostatic constraints and information derived from resistance studies produces inhibitors with enhanced activity, high genetic barrier, and distinct resistance profile from T-20 and other inhibitors. Hence, this is a promising approach for the design of future generation peptide fusion inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号