首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3696篇
  免费   271篇
  国内免费   1篇
  3968篇
  2022年   19篇
  2021年   44篇
  2020年   30篇
  2019年   36篇
  2018年   50篇
  2017年   39篇
  2016年   62篇
  2015年   95篇
  2014年   122篇
  2013年   177篇
  2012年   183篇
  2011年   223篇
  2010年   154篇
  2009年   139篇
  2008年   208篇
  2007年   213篇
  2006年   201篇
  2005年   198篇
  2004年   181篇
  2003年   166篇
  2002年   179篇
  2001年   131篇
  2000年   115篇
  1999年   83篇
  1998年   41篇
  1997年   43篇
  1996年   25篇
  1995年   39篇
  1994年   36篇
  1993年   22篇
  1992年   53篇
  1991年   52篇
  1990年   48篇
  1989年   59篇
  1988年   49篇
  1987年   43篇
  1986年   50篇
  1985年   41篇
  1984年   31篇
  1983年   23篇
  1982年   26篇
  1981年   22篇
  1980年   25篇
  1979年   27篇
  1978年   20篇
  1977年   24篇
  1976年   16篇
  1974年   18篇
  1973年   15篇
  1971年   15篇
排序方式: 共有3968条查询结果,搜索用时 12 毫秒
31.
Saltwater crocodiles (Crocodylus porosus) in the Northern Territory of Australia were protected in 1971, after a severe population decline resulting from 26 yr of intense commercial hunting. By that time wild saltwater crocodiles were rarely sighted anywhere and they were commercially extinct in areas where they had once been abundant. Standardized monitoring by spotlight surveys started in 1975 and provided relative density indices over time (1975–2009) as a unique record of the post-protection recovery of a wild crocodilian population. We examined the survey data for populations at 12 major tidal rivers, individually and as a single subpopulation. The pattern of recovery in the subpopulation in both abundance and biomass was approximated by logistic curves, predicting 5.26 non-hatchling crocodiles weighing 387.64 kg sighted per kilometer of river in 2010. We predicted potential carrying capacity as 5.58 non-hatchling crocodiles (5.73% higher than 2010) weighing 519.0 kg (25.31% higher than 2010). Individual rivers showed largely different abundance and biomass among rivers. The statistical model that best described the recovery in individual rivers was not always logistic. However, where it was logistic, expected carrying capacity of different rivers showed considerable variation in abundance and biomass. The variation indicates different habitat quality among the rivers. Recovery occurred despite various consumptive uses, particularly a widespread egg-harvest program, which has been an integral part of the incentive-driven conservation program for saltwater crocodiles in the Northern Territory since 1983. We suggest that the saltwater crocodile population of the Northern Territory is achieving full recovery from uncontrolled hunting in 1945–1971. Although saltwater crocodiles are considered an important natural resource, their increase in number, size, and distribution is posing management issues for public safety. Continuation of human–crocodile conflict management through public education and strategic removal of problem crocodiles will be essential. © 2011 The Wildlife Society.  相似文献   
32.
In order to acquire phase-contrast images with adequate contrast, conventional TEM requires large amount of defocus. Increasing the defocus improves the low-frequency components but attenuates the high-frequency ones. On the other hand, Zernike phase-contrast TEM (ZPC-TEM) can recover low-frequency components without losing the high-frequency ones under in-focus conditions. ZPC-TEM however, has another problem, especially in imaging of complex biological specimens such as cells and tissues; strong halos appear around specimen structures, and these halos hinder the interpretation of images. Due to this problem, the application of ZPC-TEM has been restricted to imaging of smaller particles. In order to improve the halo appearance, we fabricated a new quarter-wave thin film phase-plate with a smaller central hole and tested it on vitreous biological specimens. ZPC-TEM with the new plate could successfully visualize, in in-focus images, the intracellular fine features of cultured cells and brain tissues. This result indicates that reduction of the central hole diameter makes ZPC-TEM applicable on size scales ranging from protein particles to tissue sections. The application of ZPC-TEM to vitreous biological specimens will be a powerful method to advance the new field of imaging science for ultrastructures in close-to-physiological state.  相似文献   
33.
This study evaluated the sleep quality of athletes in normobaric hypoxia at a simulated altitude of 2,000 m. Eight male athletes slept in normoxic condition (NC) and hypoxic conditions equivalent to those at 2,000-m altitude (HC). Polysomnographic recordings of sleep included the electroencephalogram (EEG), electrooculogram, chin surface electromyogram, and electrocardiogram. Thoracic and abdominal motion, nasal and oral airflow, and arterial blood oxygen saturation (Sa(O(2))) were also recorded. Standard visual sleep stage scoring and fast Fourier transformation analyses of the EEG were performed on 30-s epochs. Subjective sleepiness and urinary catecholamines were also monitored. Mean Sa(O(2)) decreased and respiratory disturbances increased with HC. The increase in respiratory disturbances was significant, but the increase was small and subclinical. The duration of slow-wave sleep (stage 3 and 4) and total delta power (<3 Hz) of the all-night non-rapid eye movement sleep EEG decreased for HC compared with NC. Subjective sleepiness and amounts of urinary catecholamines did not differ between the conditions. These results indicate that acute exposure to normobaric hypoxia equivalent to that at 2,000-m altitude decreased slow-wave sleep in athletes, but it did not change subjective sleepiness or amounts of urinary catecholamines.  相似文献   
34.
A new tuberculin-active substance, designated TAS-1D3, has been purified from the extract of Mycobacterium bovis BCG by precipitation at pH 4.2, ethanol fractionation, and column chromatography involving CM-cellulose, QAE-Sephadex A-25, Sephadex G-100, and Sephadex G-75. TAS-1D3 was homogeneous in polyacrylamide gel electrophoresis and positive in both Coomassie brilliant blue and periodic acid-Shiff staining, suggesting that TAS-1D3 is a glycoprotein. The molecular weight of TAS-1D3 was estimated to be 26,000 by gel filtration. In amino acid analysis, TAS-1D3 was distinctive in having proline as a dominant amino acid, and in that it lacked basic amino acids, sulfur-containing amino acids and aromatic amino acids. Moreover, TAS-1D3 was almost devoid of absorption at around 280 nm. In guinea pigs sensitized with BCG vaccine, the tuberculin activity of TAS-1D3 was about forty times more potent than that of purified protein derivative (PPD).  相似文献   
35.
N-Glycosylation of integrin α5β1 plays a crucial role in cell spreading, cell migration, ligand binding, and dimer formation, but the detailed mechanisms by which N-glycosylation mediates these functions remain unclear. In a previous study, we showed that three potential N-glycosylation sites (α5S3–5) on the β-propeller of the α5 subunit are essential to the functional expression of the subunit. In particular, site 5 (α5S5) is the most important for its expression on the cell surface. In this study, the function of the N-glycans on the integrin β1 subunit was investigated using sequential site-directed mutagenesis to remove the combined putative N-glycosylation sites. Removal of the N-glycosylation sites on the I-like domain of the β1 subunit (i.e. the Δ4-6 mutant) decreased both the level of expression and heterodimeric formation, resulting in inhibition of cell spreading. Interestingly, cell spreading was observed only when the β1 subunit possessed these three N-glycosylation sites (i.e. the S4-6 mutant). Furthermore, the S4-6 mutant could form heterodimers with either α5S3-5 or α5S5 mutant of the α5 subunit. Taken together, the results of the present study reveal for the first time that N-glycosylation of the I-like domain of the β1 subunit is essential to both the heterodimer formation and biological function of the subunit. Moreover, because the α5S3-5/β1S4-6 mutant represents the minimal N-glycosylation required for functional expression of the β1 subunit, it might also be useful for the study of molecular structures.Integrin is a heterodimeric glycoprotein that consists of both an α and a β subunit (1). The interaction between integrin and the extracellular matrix is essential to both physiologic and pathologic events, such as cell migration, development, cell viability, immune homeostasis, and tumorigenesis (2, 3). Among the integrin superfamily, β1 integrin can combine with 12 distinct α subunits (α1–11, αv) to form heterodimers, thereby acquiring a wide variety of ligand specificity (1, 4). Integrins are thought to be regulated by inside-out signaling mechanisms that provoke conformational changes, which modulate the affinity of integrin for the ligand (5). However, an increasing body of evidence suggests that cell-surface carbohydrates mediate a variety of interactions between integrin and its extracellular environment, thereby affecting integrin activity and possibly tumor metastasis as well (68).Guo et al. (9) reported that an increase in β1–6-GlcNAc sugar chains on the integrin β1 subunit stimulated cell migration. In addition, elevated sialylation of the β1 subunit, because of Ras-induced STGal-I transferase activity, also induced cell migration (10, 11). Conversely, cell migration and spreading were reduced by the addition of a bisecting GlcNAc, which is a product of N-acetylglucosaminyltransferase III (GnT-III),2 to the α5β1 and α3β1 integrins (12, 13). Alterations of N-glycans on integrins might also regulate their cis interactions with membrane-associated proteins, including the epidermal growth factor receptor, the galectin family, and the tetraspanin family of proteins (1419).In addition to the positive and negative regulatory effects of N-glycan, several research groups have reported that N-glycans must be present on integrin α5β1 for the αβ heterodimer formation and proper integrin-matrix interactions. Consistent with this hypothesis, in the presence of the glycosylation inhibitor, tunicamycin, normal integrin-substrate binding and transport to the cell surface are inhibited (20). Moreover, treatment of purified integrin with N-glycosidase F blocked both the inherent association of the subunits and the interaction between integrin and fibronectin (FN) (21). These results suggest that N-glycosylation is essential to the functional expression of α5β1. However, because integrin α5β1 contains 26 potential N-linked glycosylation sites, 14 in the α subunit and 12 in the β subunit, identification of the sites that are essential to its biological functions is key to understanding the molecular mechanisms by which N-glycans alter integrin function. Recently, our group determined that N-glycosylation of the β-propeller domain on the α5 subunit is essential to both heterodimerization and biological functions of the subunit. Furthermore, we determined that sites 3–5 are the most important sites for α5 subunit-mediated cell spreading and migration on FN (22). The purpose of this study was to clarify the roles of N-glycosylation of the β1 subunit. Therefore, we performed combined substitutions in the putative N-glycosylation sites by replacement of asparagine residues with glutamine residues. We subsequently introduced these mutated genes into β1-deficient epithelial cells (GE11). The results of these mutation experiments revealed that the N-glycosylation sites on the I-like domain of the β1 subunit, sites number 4–6 (S4-6), are essential to both heterodimer formation and biological functions, such as cell spreading.  相似文献   
36.
In order to elucidate the role of histamine in the liver, we studied the effect of a histamine H1-receptor antagonist on the carbohydrate and lipid metabolism in the rat liver. The administration of the H1-receptor antagonist decreased significantly the contents of glycogen and malonyl-CoA in the liver. However, it did not affect the levels of serum glucose and free fatty acid. These results suggest that histamine may play a part in the regulation of metabolism of carbohydrates and lipids in the liver.  相似文献   
37.
It has been proposed that in autosomal recessive juvenile parkinsonism (AR-JP), a ubiquitin ligase (E3) Parkin, which is involved in endoplasmic reticulum-associated degradation (ERAD), lacks E3 activity. The resulting accumulation of Parkin-associated endothelin receptor-like receptor (Pael-R), a substrate of Parkin, leads to endoplasmic reticulum stress, causing neuronal death. We previously reported that human E3 HRD1 in the endoplasmic reticulum protects against endoplasmic reticulum stress-induced apoptosis. This study shows that HRD1 was expressed in substantia nigra pars compacta (SNC) dopaminergic neurons and interacted with Pael-R through the HRD1 proline-rich region, promoting the ubiquitylation and degradation of Pael-R. Furthermore, the disruption of endogenous HRD1 by small interfering RNA (siRNA) induced Pael-R accumulation and caspase-3 activation. We also found that ATF6 overexpression, which induced HRD1, accelerated and caused Pael-R degradation; the suppression of HRD1 expression by siRNA partially prevents this degradation. These results suggest that in addition to Parkin, HRD1 is also involved in the degradation of Pael-R.  相似文献   
38.
Small GTPase Rab27A plays a pivotal role in melanosome transport in melanocytes and in secretion by various secreting cells. Because the GTP- or GDP-locked mutant of Rab27A causes perinuclear aggregation of melanosomes, appropriate GTP-GDP cycling of Rab27A is essential for melanosome transport, and certain guanine nucleotide exchange factors and GTPase-activating proteins (GAPs) of Rab27A must be present in melanocytes. However, no such regulators of Rab27A have ever been identified. In this study we developed novel methods of rapidly screening 40 different TBC (Tre2/Bub2/Cdc16) proteins, putative Rab-GAPs, for Rab27A-GAP by: (i) searching for TBC proteins that induce melanosome aggregation in melanocytes; (ii) trapping GTP-Rab27A with a Rab27A effector domain (i.e. the SHD of Slac2-a) in cultured cells that express both Rab27A and TBC proteins; and (iii) measuring in vitro Rab27A-GAP activity. These methods allowed us to identify EPI64, previously characterized as an EBP50-binding protein that contains an orphan TBC domain, as a specific Rab27A-GAP. We further showed that mutations in the catalytic domain of EPI64 caused complete loss of its ability to induce melanosome aggregation. This is the first report of screening for Rab27A-GAP based on functional interactions, and our screening methods can be applied for other uncharacterized TBC proteins.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号