首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2902篇
  免费   158篇
  2023年   6篇
  2022年   22篇
  2021年   47篇
  2020年   17篇
  2019年   34篇
  2018年   46篇
  2017年   41篇
  2016年   71篇
  2015年   88篇
  2014年   134篇
  2013年   174篇
  2012年   203篇
  2011年   208篇
  2010年   122篇
  2009年   118篇
  2008年   193篇
  2007年   170篇
  2006年   170篇
  2005年   171篇
  2004年   191篇
  2003年   189篇
  2002年   182篇
  2001年   28篇
  2000年   35篇
  1999年   35篇
  1998年   46篇
  1997年   36篇
  1996年   28篇
  1995年   44篇
  1994年   18篇
  1993年   22篇
  1992年   15篇
  1991年   18篇
  1990年   14篇
  1989年   9篇
  1988年   11篇
  1987年   14篇
  1986年   11篇
  1985年   11篇
  1984年   12篇
  1983年   12篇
  1982年   6篇
  1981年   3篇
  1980年   7篇
  1979年   4篇
  1978年   5篇
  1977年   3篇
  1972年   2篇
  1969年   2篇
  1967年   2篇
排序方式: 共有3060条查询结果,搜索用时 15 毫秒
991.
Three Arabidopsis genes encoding a putative beta-galactosidase (At5g56870), beta-xylosidase (At5g49360) and beta-glucosidase (At3g60140) are induced by sugar starvation. The deduced proteins belong to the glycosyl hydrolase families 35, 3 and 1, respectively. They are predicted to be secretory proteins that play roles in modification of cell wall polysaccharides based on amino acid similarity. The beta-galactosidase encoded by At5g56870 was identified as a secretory protein in culture medium of suspension cells by mass spectrometry analysis. This protein was specifically detected under sugar-starved conditions with a specific antibody. Induction of these genes was repressed in suspension cells grown with galactose, xylose and glucose, as well as with sucrose. In planta, expression of the genes and protein accumulation were detected when photosynthesis was inhibited. Glycosyl hydrolase activity against galactan also increased during sugar starvation. The amount of monosaccharide in pectin and hemicellulose in detached leaves decreased in response to sugar starvation. These findings suggest that the cell wall may function as a storage reserve of carbon in addition to providing physical support for the plant body.  相似文献   
992.
The effects of air drying and hypertonic treatments in the dark on seven bryophytes, which had grown under different water environments, were studied. All the desiccation-tolerant species tested lost most of their PSII photochemical activity when photosynthetic electron transport was inhibited by air drying, while, in all the sensitive species, the PSII photochemical activity remained at a high level even when photosynthesis was totally inhibited. The PSI reaction center remained active under drying conditions in both sensitive and tolerant species, but the activity became non-detectable in the light only in tolerant species due to deactivation of the cyclic electron flow around PSI and of the back reaction in PSI. Light-induced non-photochemical quenching (NPQ) was found to be induced not only by the xanthophyll cycle but also by a DeltapH-induced, dithiothreitol-insensitive mechanism in both the desiccation-tolerant and -intolerant bryophytes. Both mechanisms are thought to have an important role in protecting desiccation-tolerant species from photoinhibition under drying conditions. Fluorescence emission spectra at 77K showed that dehydration-induced quenching of PSII fluorescence was observed only in tolerant species and was due to neither state 1-state 2 transition nor detachment of light-harvesting chlorophyll protein complexes from PSII core complexes.The presence of dehydration-induced quenching of PSI fluorescence was also suggested.  相似文献   
993.
Cynomolgus monkey CYP2C76 does not have a corresponding ortholog in humans, and it is at least partly responsible for differences in drug metabolism between monkeys and humans. To determine if CYP2C76 is the only monkey-specific CYP gene, we identified cynomolgus monkey cDNAs for CYP2A23, CYP2A24, CYP2E1, CYP2J2, CYP3A5, CYP3A8, CYP4A11, CYP4F3, CYP4F11, CYP4F12, and CYP4F45. These CYP cDNAs showed a high sequence identity (93-96%) to the homologous human CYP cDNAs. The monkey CYPs were preferentially expressed in liver among the analyzed tissues. Moreover, all five analyzed monkey CYPs (CYP2A23, CYP2A24, CYP2E1, CYP3A5, and CYP3A8) metabolized typical substrates for human CYPs in the corresponding subfamilies. These results suggest that these 11 monkey CYP cDNAs are closely related to the human CYP cDNAs and thus, unlike CYP2C76, are not apparent monkey-specific cDNAs.  相似文献   
994.
Liu J  Yoshida Y  Yamashita U 《FEBS letters》2007,581(26):5043-5049
Reactive oxygen species (ROS) produced by the innate immune system work as effectors to destroy pathogens and to control cellular responses. However, their role in the adaptive immune response remains unclear. Here we studied the effect of exogenous ROS on CD40-induced B cell activation. H2O2 treatment inhibited CD40-induced immunoglobulin production of B cells, DNA binding of NF-kappaB, IkappaBalpha degradation and IKK phosphorylation. On the other hand, H2O2 treatment did not induce obvious B cell death after 30 min of stimulation. Although the ligation of anti-CD40 antibody was not disturbed by H2O2, TRAF2 recruitment to CD40 was inhibited. These results suggest that exogenous ROS play a negative role in CD40 signaling during B cell activation.  相似文献   
995.
Neuronal precursors remain in the proliferative zone of the developing mammalian neocortex until after they have undergone neuronal differentiation and cell cycle arrest. The newborn neurons then migrate away from the proliferative zone and enter the cortical plate. The molecules that coordinate migration with neuronal differentiation have been unclear. We have proposed in this study that the cdk inhibitors p57 and p27 play a role in this coordination. We have found that p57 and p27 mRNA increase upon neuronal differentiation of neocortical neuroepithelial cells. Knockdown of p57 by RNA interference resulted in a significant delay in the migration of neurons that entered the cortical plate but did not affect neuronal differentiation. Knockdown of p27 also inhibits neuronal migration in the intermediate zone as well as in the cortical plate, as reported by others. We have also found that knockdown of p27 increases p57 mRNA levels. These results suggest that both p57 and p27 play essential roles in neuronal migration and may, in concert, coordinate the timing of neuronal differentiation, migration, and possibly cell cycle arrest in neocortical development.  相似文献   
996.
BACE1 (beta-site amyloid precursor protein-cleaving enzyme-1) is a membrane-bound aspartic protease that cleaves amyloid precursor protein to produce a neurotoxic peptide, amyloid beta-peptide, and has been implicated in triggering the pathogenesis of Alzheimer disease. We showed previously that BACE1 cleaves beta-galactoside alpha2,6-sialyltransferase I (ST6Gal I) to initiate its secretion, but it remained unclear how BACE1 affects the cellular level of alpha2,6-sialylation. Here, we found that BACE1 overexpression in Hep3B cells increased the sialylation of soluble secreted glycoproteins, but did not affect cell-surface sialylation. The sialylation of soluble glycoproteins was not increased by ST6Gal I overexpression alone, but was increased by co-overexpression of ST6Gal I and BACE1 or by expression of the soluble form of ST6Gal I, suggesting that soluble ST6Gal I produced by BACE1 plays, at least in part, a role in the sialylation of soluble glycoproteins. We also found that plasma glycoproteins from BACE1-deficient mice exhibited reduced levels of alpha2,6-sialylation compared with those from wild-type mice. We propose a novel regulatory mechanism in which cleavage and secretion of ST6Gal I enhance the sialylation of soluble glycoprotein substrates.  相似文献   
997.
PsbT is a small chloroplast-encoded hydrophobic polypeptide associated with the D1/D2 heterodimer of the photosystem II (PSII) reaction center and is required for the efficient post-translational repair of photodamaged PSII. Here we addressed that role in detail in Chlamydomonas reinhardtii wild type and DeltapsbT cells by analyzing the activities of PSII, the assembly of PSII proteins, and the redox components of PSII during photoinhibition and repair. Strong illumination of cells for 15 min decreased the activities of electron transfer through PSII and Q(A) photoreduction by 50%, and it reduced the amount of atomic manganese by 20%, but it did not affect the steady-state level of PSII proteins, photoreduction of pheophytin (pheo(D1)), and the amount of bound plastoquinone (Q(A)), indicating that the decrease in PSII activity resulted mainly from inhibition of the electron transfer from pheo(D1) to Q(A). In wild type cells, we observed parallel recovery of electron transfer activity through PSII and Q(A) photoreduction, suggesting that the recovery of Q(A) activity is one of the rate-limiting steps of PSII repair. In DeltapsbT cells, the repairs of electron transfer activity through PSII and of Q(A) photoreduction activity were both impaired, but PSII protein turnover was unaffected. Moreover, about half the Q(A) was lost from the PSII core complex during purification. Since PsbT is intimately associated with the Q(A)-binding region on D2, we propose that this polypeptide enhances the efficient recovery of Q(A) photoreduction by stabilizing the structure of the Q(A)-binding region.  相似文献   
998.
Rare monoclonal antibodies (Abs) can form irreversible complexes with antigens by enzyme-like covalent nucleophile-electrophile pairing. To determine the feasibility of applying irreversible antigen inactivation by Abs as the basis of vaccination against microbes, we studied the polyclonal nucleophilic Ab response induced by the electrophilic analog of a synthetic peptide corresponding to the principal neutralizing determinant (PND) of human immunodeficiency virus type-1 (HIV) gp120 located in the V3 domain. Abs from mice immunized with the PND analog containing electrophilic phosphonates (E-PND) neutralized a homologous HIV strain (MN) approximately 50-fold more potently than control Abs from mice immunized with PND. The IgG fractions displayed binding to intact HIV particles. HIV complexes formed by anti-E-PND IgG dissociated noticeably more slowly than the complexes formed by anti-PND IgG. The slower dissociation kinetics are predicted to maintain long-lasting blockade of host cell receptor recognition by gp120. Pretreatment of the anti-PND IgG with a haptenic electrophilic phosphonate compound resulted in more rapid dissociation of the HIV-IgG complexes, consistent with the hypothesis that enhanced Ab nucleophilic reactivity induced by electrophilic immunization imparts irreversible character to the complexes. These results suggest that electrophilic immunization induces a sufficiently robust nucleophilic Ab response to enhance the anti-microbial efficacy of candidate polypeptide vaccines.  相似文献   
999.
An environmentally friendly method using the metal ion-reducing bacterium Shewanella algae was proposed to deposit platinum nanoparticles. Resting cells of S. algae were able to reduce aqueous PtCl(6)(2-) ions into elemental platinum at room temperature and neutral pH within 60min when lactate was provided as the electron donor. Biogenic platinum nanoparticles of about 5nm were located in the periplasm--a preferable, cell surface location for easy recovery of biogenic nanoparticles.  相似文献   
1000.
Appropriate supply of deoxyribonucleotides by the ribonucleotide reductase (RNR) complex is essential for DNA replication and repair. One recent model for the RNR activation in Schizosaccharomyces pombe is translocation of the regulatory subunit Suc22 from the nucleoplasm to the cytoplasm. The RNR inhibitory protein Spd1, which retains Suc22 in the nucleoplasm, is rapidly degraded upon DNA-replication stress, resulting in release of Suc22 to form the active RNR complex in the cytoplasm. Here, we show that Caf1, a component of the Ccr4–Not complex, is responsible for resistance of the replication stress and control of the Suc22 translocation. Caf1 is required not only for the stress-induced translocation of Suc22 from nucleoplasm to cytoplasm but also for the degradation of nucleoplasmic Spd1. DNA-replication stress appears to allow Caf1 to interact with Suc22, resulting in release of the nucleoplasmic Spd1–Suc22 assembly. Taken together, these results suggest a novel function of Caf1 as a key regulator in the stress-induced RNR activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号