首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2863篇
  免费   152篇
  2023年   5篇
  2022年   15篇
  2021年   47篇
  2020年   16篇
  2019年   34篇
  2018年   46篇
  2017年   40篇
  2016年   72篇
  2015年   86篇
  2014年   137篇
  2013年   173篇
  2012年   204篇
  2011年   209篇
  2010年   122篇
  2009年   115篇
  2008年   189篇
  2007年   168篇
  2006年   168篇
  2005年   169篇
  2004年   190篇
  2003年   190篇
  2002年   176篇
  2001年   27篇
  2000年   27篇
  1999年   32篇
  1998年   47篇
  1997年   35篇
  1996年   29篇
  1995年   43篇
  1994年   17篇
  1993年   21篇
  1992年   13篇
  1991年   17篇
  1990年   14篇
  1989年   9篇
  1988年   9篇
  1987年   13篇
  1986年   12篇
  1985年   10篇
  1984年   12篇
  1983年   12篇
  1982年   6篇
  1981年   3篇
  1980年   7篇
  1979年   4篇
  1978年   4篇
  1977年   4篇
  1971年   2篇
  1969年   2篇
  1967年   2篇
排序方式: 共有3015条查询结果,搜索用时 15 毫秒
71.

Background

Cardiac troponin is a specific biomarker for cardiomyocyte necrosis in acute coronary syndromes. Troponin release from the coronary circulation remains to be determined because of the lower sensitivity of the conventional assay. We sought to determine basal and angina-induced troponin release using a highly sensitive troponin assay.

Methods and Results

The cardiac troponin T levels in serum sampled from the peripheral vein (PV), the aortic root (AO), and the coronary sinus (CS) were measured in 105 consecutive stable patients with coronary risk factor(s) and suspected coronary artery disease (CAD) and in 33 patients without CAD who underwent an acetylcholine provocation test. At baseline, there was a significant increase in the troponin levels from AO [9.0 (6.4, 13.1) pg/mL for median (25th, 75th percentiles)] to CS [10.3 (7.3, 15.5) pg/mL, p<0.001] in 96 (91.4%) patients and the difference was 1.1 (0.4, 2.1) pg/mL, which reflected basal transcardiac troponin release (TTR). TTR was positively correlated with PV levels (r = 0.22, p = 0.03). Male sex, left ventricular hypertrophy determined by echocardiography, T-wave inversion, and CAD correlated with elevated TTR defined as above: median, 1.1 pg/mL. A significant increase in TTR was noted in 17 patients with coronary spasms [0.6 (0.2, 1.2) pg/mL, p<0.01] but not in 16 patients without spasms [0.0 (−0.5, 0.9) pg/mL, p = 0.73] after the acetylcholine provocation.

Conclusion

Basal TTR in the coronary circulation was observed in most of the patients with suspected CAD and risk factor(s). This sensitive assay detected myocardial ischemia-induced increases in TTR caused by coronary spasms.  相似文献   
72.
We previously reported emergence and disappearance of circadian molecular oscillations during differentiation of mouse embryonic stem (ES) cells and reprogramming of differentiated cells, respectively. Here we present a robust and stringent in vitro circadian clock formation assay that recapitulates in vivo circadian phenotypes. This assay system first confirmed that a mutant ES cell line lacking Casein Kinase I delta (CKIδ) induced ∼3 hours longer period-length of circadian rhythm than the wild type, which was compatible with recently reported results using CKIδ null mice. In addition, this assay system also revealed that a Casein Kinase 2 alpha subunit (CK2α) homozygous mutant ES cell line developed significantly longer (about 2.5 hours) periods of circadian clock oscillations after in vitro or in vivo differentiation. Moreover, revertant ES cell lines in which mutagenic vector sequences were deleted showed nearly wild type periods after differentiation, indicating that the abnormal circadian period of the mutant ES cell line originated from the mutation in the CK2α gene. Since CK2α deficient mice are embryonic lethal, this in vitro assay system represents the genetic evidence showing an essential role of CK2α in the mammalian circadian clock. This assay was successfully applied for the phenotype analysis of homozygous mutant ES cells, demonstrating that an ES cell-based in vitro assay is available for circadian genetic screening.  相似文献   
73.

Aims

Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammation, which contributes to the pathological remodeling of the extracellular matrix. Although mechanical stress has been suggested to promote inflammation in AAA, the molecular mechanism remains uncertain. Periostin is a matricellular protein known to respond to mechanical strain. The aim of this study was to elucidate the role of periostin in mechanotransduction in the pathogenesis of AAA.

Methods and Results

We found significant increases in periostin protein levels in the walls of human AAA specimens. Tissue localization of periostin was associated with inflammatory cell infiltration and destruction of elastic fibers. We examined whether mechanical strain could stimulate periostin expression in cultured rat vascular smooth muscle cells. Cells subjected to 20% uniaxial cyclic strains showed significant increases in periostin protein expression, focal adhesion kinase (FAK) activation, and secretions of monocyte chemoattractant protein-1 (MCP-1) and the active form of matrix metalloproteinase (MMP)-2. These changes were largely abolished by a periostin-neutralizing antibody and by the FAK inhibitor, PF573228. Interestingly, inhibition of either periostin or FAK caused suppression of the other, indicating a positive feedback loop. In human AAA tissues in ex vivo culture, MCP-1 secretion was dramatically suppressed by PF573228. Moreover, in vivo, periaortic application of recombinant periostin in mice led to FAK activation and MCP-1 upregulation in the aortic walls, which resulted in marked cellular infiltration.

Conclusion

Our findings indicated that periostin plays an important role in mechanotransduction that maintains inflammation via FAK activation in AAA.  相似文献   
74.
Biological Trace Element Research - The essential trace element zinc maintains liver functions. Liver diseases can alter overall zinc concentrations, and hypozincemia is associated with various...  相似文献   
75.
Geleophysic dysplasia (GD) is a rare disorder characterized by severe short stature, short hands and feet, limited joint mobility, skin thickening, characteristic facial features (e.g., a “happy” face), and cardiac valvular disorders that often result in an early death. The genes ADAMTSL2 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif-like 2) and FBN1 (fibrillin 1) were recently identified as causative genes for GD. Here, we describe a 10-year-old Japanese female with GD who was born to non-consanguineous parents. At the age of 11 months, she was referred to our hospital because of very short stature for her age (− 4.4 standard deviations of the age-matched value) and a “happy” face with full cheeks, a shortened nose, hypertelorism, and a long and flat philtrum, characteristic of GD. Her hands and feet were small, her skin was thickened, and her joint mobility was generally limited. She had cardiac valvular disorders and history of recurrent respiratory failure. Mutation analysis revealed no abnormalities in ADAMTSL2. However, analysis of FBN1 revealed a novel heterozygous mutation (c.5161T > T/G) in exon 41, which encodes transforming growth factor-β-binding protein-like domain 5 (TB5). GD is an extremely rare disorder and, to our knowledge, only one case of GD with an FBN1 mutation has been reported in Japan. Similar to the previously reported cases of GD, the mutation in the current patient was located in the TB5 domain, which suggests that abnormalities in this domain of FBN1 are responsible for GD.  相似文献   
76.
The mechanisms underlying the cellular entry of the HIV-1 Tat protein transduction domain (TatP) and the molecular information necessary to improve the transduction efficiency of TatP remain unclear due to the technical limitations for direct visualization of TatP''s behavior in cells. Using confocal microscopy, total internal reflection fluorescence microscopy, and four-dimensional microscopy, we developed a single-molecule tracking assay for TatP labeled with quantum dots (QDs) to examine the kinetics of TatP initially and immediately before, at the beginning of, and immediately after entry into living cells. We report that even when the number of multivalent TatP (mTatP)-QDs bound to a cell was low, each single mTatP-QD first locally induced the cell''s lateral transport machinery to move the mTatP-QD toward the center of the cell body upon cross-linking of heparan sulfate proteoglycans. The centripetal and lateral movements were linked to the integrity and flow of actomyosin and microtubules. Individual mTatP underwent lipid raft-mediated temporal confinement, followed by complete immobilization, which ultimately led to endocytotic internalization. However, bivalent TatP did not sufficiently promote either cell surface movement or internalization. Together, these findings provide clues regarding the mechanisms of TatP cell entry and indicate that increasing the valence of TatP on nanoparticles allows them to behave as cargo delivery nanomachines.  相似文献   
77.
Root orientation can affect detection accuracy of ground-penetrating radar   总被引:1,自引:0,他引:1  

Aim

Ground-penetrating radar (GPR) has been applied to detect coarse tree roots. The horizontal angle of a root crossing a scanning line is a factor that affects both root detection and waveform parameter values. The purpose of this study was to quantitatively evaluate the influence of root orientation (x, degree) on two major waveform parameters, amplitude area (A, dB × ns) and time interval between zero crossings (T, ns).

Methods

We scanned four diameter classes of dowels in a sandy bed as simulated roots using a 900 MHz antenna from multiple angles to clarify the relationships between the parameters and x.

Results

Angle x strongly affected reflection images and A values. The variation in A(x) fitted a sinusoidal waveform, whereas T was independent of x. The value of A scanning at 90° was estimated by A values of arbitrary x in two orthogonal transects. The sum of T in all reflected waveforms showed a significant linear correlation with dowel diameter.

Conclusions

We clarified that root orientation dramatically affected root detection and A values. The sum of T of all reflected waveforms was a suitable parameter for estimating root diameter. Applying grid transects can overcome the effects of root orientation.  相似文献   
78.
Acinetobacter sp. strain YAA has five genes (atdA1 to atdA5) involved in aniline oxidation as a part of the aniline degradation gene cluster. From sequence analysis, the five genes were expected to encode a glutamine synthetase (GS)-like protein (AtdA1), a glutamine amidotransferase-like protein (AtdA2), and an aromatic compound dioxygenase (AtdA3, AtdA4, and AtdA5) (M. Takeo, T. Fujii, and Y. Maeda, J. Ferment. Bioeng. 85:17-24, 1998). A recombinant Pseudomonas strain harboring these five genes quantitatively converted aniline into catechol, demonstrating that catechol is the major oxidation product from aniline. To elucidate the function of the GS-like protein AtdA1 in aniline oxidation, we purified it from recombinant Escherichia coli harboring atdA1. The purified AtdA1 protein produced gamma-glutamylanilide (γ-GA) quantitatively from aniline and l-glutamate in the presence of ATP and MgCl2. This reaction was identical to glutamine synthesis by GS, except for the use of aniline instead of ammonia as the substrate. Recombinant Pseudomonas strains harboring the dioxygenase genes (atdA3 to atdA5) were unable to degrade aniline but converted γ-GA into catechol, indicating that γ-GA is an intermediate to catechol and a direct substrate for the dioxygenase. Unexpectedly, a recombinant Pseudomonas strain harboring only atdA2 hydrolyzed γ-GA into aniline, reversing the γ-GA formation by AtdA1. Deletion of atdA2 from atdA1 to atdA5 caused γ-GA accumulation from aniline in recombinant Pseudomonas cells and inhibited the growth of a recombinant Acinetobacter strain on aniline, suggesting that AtdA2 prevents γ-GA accumulation that is harmful to the host cell.  相似文献   
79.
We investigated the role of the astrocytic and neuronal hemichannels (HCs) in the spread of cortical neuronal death in a rat cortical injury model. Over time (by 6 h), propidium iodide (PI)-positive cells with labeling either with anti-neuron specific enolase or anti-parvalbumin (indicating GABAnergic interneurons) antibody spread in the deep cortical layers adjacent to the injury and co-localized with activated μ-calpain. Connexin (Cx)-43, glial fibrillary acidic protein (GFAP), activated μ-calpain and α-fodrin breakdown product (FBP) increased post-injury, peaking at 1 h, in the injury and adjacent areas. GFAP-Cx43-positive reactivated astrocytes exhibited similar distribution to the dead neurons. Cx43 and Cx36 primarily comprise HCs in the astrocyte and neuron, respectively. Ethidium bromide (EtBr) uptake was enhanced post-injury, and confirmed in the Cx43- and Cx36-positive cells. A Cx43-HC inhibitor Gap26 prevented the opening of the Cx43-HC and Cx36-HC, μ-calpain activation, α-fodrin proteolysis and death in the deep cortical neurons. Collectively, opening of the astrocytic Cx43-HC and neuronal Cx36-HC would induce the regional spread of cortical neuronal death through μ-calpain activation in the rat brain injury model.  相似文献   
80.
A series of 2,3-disubstituted pyridines were synthesized and evaluated for their PDE4 inhibitory activity. We successfully modified undesirable cyano group of initial lead compound 2 to 4-pyridyl group with improvement of in vitro efficacy and optimized the position of nitrogen atoms in pyridine moiety and alkylene linker. The most potent compound showed significant efficacy in animal models of asthma and inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号