首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3975篇
  免费   207篇
  2023年   7篇
  2022年   23篇
  2021年   86篇
  2020年   31篇
  2019年   59篇
  2018年   79篇
  2017年   77篇
  2016年   112篇
  2015年   143篇
  2014年   198篇
  2013年   253篇
  2012年   287篇
  2011年   290篇
  2010年   172篇
  2009年   180篇
  2008年   275篇
  2007年   249篇
  2006年   232篇
  2005年   216篇
  2004年   231篇
  2003年   244篇
  2002年   221篇
  2001年   22篇
  2000年   32篇
  1999年   37篇
  1998年   57篇
  1997年   41篇
  1996年   37篇
  1995年   48篇
  1994年   24篇
  1993年   27篇
  1992年   19篇
  1991年   20篇
  1990年   17篇
  1989年   13篇
  1988年   11篇
  1987年   13篇
  1986年   12篇
  1985年   11篇
  1984年   14篇
  1983年   15篇
  1982年   8篇
  1981年   4篇
  1980年   8篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1972年   2篇
  1969年   2篇
  1967年   2篇
排序方式: 共有4182条查询结果,搜索用时 31 毫秒
91.
We previously reported emergence and disappearance of circadian molecular oscillations during differentiation of mouse embryonic stem (ES) cells and reprogramming of differentiated cells, respectively. Here we present a robust and stringent in vitro circadian clock formation assay that recapitulates in vivo circadian phenotypes. This assay system first confirmed that a mutant ES cell line lacking Casein Kinase I delta (CKIδ) induced ∼3 hours longer period-length of circadian rhythm than the wild type, which was compatible with recently reported results using CKIδ null mice. In addition, this assay system also revealed that a Casein Kinase 2 alpha subunit (CK2α) homozygous mutant ES cell line developed significantly longer (about 2.5 hours) periods of circadian clock oscillations after in vitro or in vivo differentiation. Moreover, revertant ES cell lines in which mutagenic vector sequences were deleted showed nearly wild type periods after differentiation, indicating that the abnormal circadian period of the mutant ES cell line originated from the mutation in the CK2α gene. Since CK2α deficient mice are embryonic lethal, this in vitro assay system represents the genetic evidence showing an essential role of CK2α in the mammalian circadian clock. This assay was successfully applied for the phenotype analysis of homozygous mutant ES cells, demonstrating that an ES cell-based in vitro assay is available for circadian genetic screening.  相似文献   
92.

Aims

Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammation, which contributes to the pathological remodeling of the extracellular matrix. Although mechanical stress has been suggested to promote inflammation in AAA, the molecular mechanism remains uncertain. Periostin is a matricellular protein known to respond to mechanical strain. The aim of this study was to elucidate the role of periostin in mechanotransduction in the pathogenesis of AAA.

Methods and Results

We found significant increases in periostin protein levels in the walls of human AAA specimens. Tissue localization of periostin was associated with inflammatory cell infiltration and destruction of elastic fibers. We examined whether mechanical strain could stimulate periostin expression in cultured rat vascular smooth muscle cells. Cells subjected to 20% uniaxial cyclic strains showed significant increases in periostin protein expression, focal adhesion kinase (FAK) activation, and secretions of monocyte chemoattractant protein-1 (MCP-1) and the active form of matrix metalloproteinase (MMP)-2. These changes were largely abolished by a periostin-neutralizing antibody and by the FAK inhibitor, PF573228. Interestingly, inhibition of either periostin or FAK caused suppression of the other, indicating a positive feedback loop. In human AAA tissues in ex vivo culture, MCP-1 secretion was dramatically suppressed by PF573228. Moreover, in vivo, periaortic application of recombinant periostin in mice led to FAK activation and MCP-1 upregulation in the aortic walls, which resulted in marked cellular infiltration.

Conclusion

Our findings indicated that periostin plays an important role in mechanotransduction that maintains inflammation via FAK activation in AAA.  相似文献   
93.
Biological Trace Element Research - The essential trace element zinc maintains liver functions. Liver diseases can alter overall zinc concentrations, and hypozincemia is associated with various...  相似文献   
94.
Geleophysic dysplasia (GD) is a rare disorder characterized by severe short stature, short hands and feet, limited joint mobility, skin thickening, characteristic facial features (e.g., a “happy” face), and cardiac valvular disorders that often result in an early death. The genes ADAMTSL2 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif-like 2) and FBN1 (fibrillin 1) were recently identified as causative genes for GD. Here, we describe a 10-year-old Japanese female with GD who was born to non-consanguineous parents. At the age of 11 months, she was referred to our hospital because of very short stature for her age (− 4.4 standard deviations of the age-matched value) and a “happy” face with full cheeks, a shortened nose, hypertelorism, and a long and flat philtrum, characteristic of GD. Her hands and feet were small, her skin was thickened, and her joint mobility was generally limited. She had cardiac valvular disorders and history of recurrent respiratory failure. Mutation analysis revealed no abnormalities in ADAMTSL2. However, analysis of FBN1 revealed a novel heterozygous mutation (c.5161T > T/G) in exon 41, which encodes transforming growth factor-β-binding protein-like domain 5 (TB5). GD is an extremely rare disorder and, to our knowledge, only one case of GD with an FBN1 mutation has been reported in Japan. Similar to the previously reported cases of GD, the mutation in the current patient was located in the TB5 domain, which suggests that abnormalities in this domain of FBN1 are responsible for GD.  相似文献   
95.
The mechanisms underlying the cellular entry of the HIV-1 Tat protein transduction domain (TatP) and the molecular information necessary to improve the transduction efficiency of TatP remain unclear due to the technical limitations for direct visualization of TatP''s behavior in cells. Using confocal microscopy, total internal reflection fluorescence microscopy, and four-dimensional microscopy, we developed a single-molecule tracking assay for TatP labeled with quantum dots (QDs) to examine the kinetics of TatP initially and immediately before, at the beginning of, and immediately after entry into living cells. We report that even when the number of multivalent TatP (mTatP)-QDs bound to a cell was low, each single mTatP-QD first locally induced the cell''s lateral transport machinery to move the mTatP-QD toward the center of the cell body upon cross-linking of heparan sulfate proteoglycans. The centripetal and lateral movements were linked to the integrity and flow of actomyosin and microtubules. Individual mTatP underwent lipid raft-mediated temporal confinement, followed by complete immobilization, which ultimately led to endocytotic internalization. However, bivalent TatP did not sufficiently promote either cell surface movement or internalization. Together, these findings provide clues regarding the mechanisms of TatP cell entry and indicate that increasing the valence of TatP on nanoparticles allows them to behave as cargo delivery nanomachines.  相似文献   
96.
Mammalian Neu3 sialidases are involved in various biological processes, such as cell death and differentiation, through desialylation of gangliosides. The enzymatic profile of Neu3 seems to be highly conserved from birds to mammals. In fish, the functional properties of Neu3 sialidase are not clearly understood, with the partial exception of the zebrafish form. To cast further light on the molecular evolution of Neu3 sialidase, we identified the encoding genes in the medaka Oryzias latipes and investigated the properties of the enzyme. PCR amplification using medaka brain cDNA allowed identification of two novel medaka Neu3 genes, neu3a and neu3b. The YRIP, VGPG motif and Asp-Box, characteristic of consensus motifs of sialidases, were well conserved in the both medaka Neu3 sialidases. When each gene was transfected into HEK293 to allow cell lysates for the use of enzymatic characterization, two Neu3 sialidases showed strict substrate specificity toward gangliosides, similar to mammalian Neu3. The optimal pH values were at pH 4.2 and pH 4.0, respectively, and neu3b in particular showed a broad optimum. Immunofluorescence assays indicated neu3a localization at plasma membranes, while neu3b was found in cytosol. The tissue distribution of two genes was then investigated by estimation of mRNA expression and sialidase activity, both being dominantly expressed in the brain. In neu3a gene-transfected neuroblastoma cells, the enzyme was found to positively regulate retinoic acid-induced differentiation with the elongation of axon length. On the other hand, neu3b did not affect neurite formation. These results and phylogenetic analysis suggested that the medaka neu3a is an evolutionally conserved sialidase with regard to enzymatic properties, whereas neu3b is likely to have originally evolved in medaka.  相似文献   
97.
Root orientation can affect detection accuracy of ground-penetrating radar   总被引:1,自引:0,他引:1  

Aim

Ground-penetrating radar (GPR) has been applied to detect coarse tree roots. The horizontal angle of a root crossing a scanning line is a factor that affects both root detection and waveform parameter values. The purpose of this study was to quantitatively evaluate the influence of root orientation (x, degree) on two major waveform parameters, amplitude area (A, dB × ns) and time interval between zero crossings (T, ns).

Methods

We scanned four diameter classes of dowels in a sandy bed as simulated roots using a 900 MHz antenna from multiple angles to clarify the relationships between the parameters and x.

Results

Angle x strongly affected reflection images and A values. The variation in A(x) fitted a sinusoidal waveform, whereas T was independent of x. The value of A scanning at 90° was estimated by A values of arbitrary x in two orthogonal transects. The sum of T in all reflected waveforms showed a significant linear correlation with dowel diameter.

Conclusions

We clarified that root orientation dramatically affected root detection and A values. The sum of T of all reflected waveforms was a suitable parameter for estimating root diameter. Applying grid transects can overcome the effects of root orientation.  相似文献   
98.
In this study, the pathway of β-citraurin biosynthesis, carotenoid contents and the expression of genes related to carotenoid metabolism were investigated in two varieties of Satsuma mandarin (Citrus unshiu), Yamashitabeni-wase, which accumulates β-citraurin predominantly, and Miyagawa-wase, which does not accumulate β-citraurin. The results suggested that CitCCD4 (for Carotenoid Cleavage Dioxygenase4) was a key gene contributing to the biosynthesis of β-citraurin. In the flavedo of Yamashitabeni-wase, the expression of CitCCD4 increased rapidly from September, which was consistent with the accumulation of β-citraurin. In the flavedo of Miyagawa-wase, the expression of CitCCD4 remained at an extremely low level during the ripening process, which was consistent with the absence of β-citraurin. Functional analysis showed that the CitCCD4 enzyme exhibited substrate specificity. It cleaved β-cryptoxanthin and zeaxanthin at the 7,8 or 7′,8′ position. But other carotenoids tested in this study (lycopene, α-carotene, β-carotene, all-trans-violaxanthin, and 9-cis-violaxanthin) were not cleaved by the CitCCD4 enzyme. The cleavage of β-cryptoxanthin and zeaxanthin by CitCCD4 led to the formation of β-citraurin. Additionally, with ethylene and red light-emitting diode light treatments, the gene expression of CitCCD4 was up-regulated in the flavedo of Yamashitabeni-wase. These increases in the expression of CitCCD4 were consistent with the accumulation of β-citraurin in the two treatments. These results might provide new strategies to improve the carotenoid contents and compositions of citrus fruits.Carotenoids, a diverse group of pigments widely distributed in nature, fulfill a variety of important functions in plants and play a critical role in human nutrition and health (Schwartz et al., 1997; Cunningham and Gantt, 1998; Havaux, 1998; Krinsky et al., 2003; Ledford and Niyogi, 2005). The pathway of carotenoid biosynthesis has been well documented in various plant species, including Arabidopsis (Arabidopsis thaliana; Park et al., 2002), tomato (Lycopersicon esculentum; Isaacson et al., 2002), pepper (Capsicum annuum; Bouvier et al., 1998), citrus (Citrus spp.; Kato et al., 2004, 2006; Rodrigo et al., 2004; Rodrigo and Zacarías, 2007; Kato, 2012; Zhang et al., 2012a), and apricot (Prunus armenaica; Kita et al., 2007). Genes encoding the enzymes in the carotenoid biosynthetic pathway have been cloned, and their expression profiles have also been characterized (Fig. 1). As carotenoids contain a series of conjugated double bonds in the central chain, they can be oxidatively cleaved in a site-specific manner (Mein et al., 2011). The oxidative cleavage of carotenoids not only regulates their accumulation but also produces a range of apocarotenoids (Walter et al., 2010). In higher plants, many different apocarotenoids derive from the cleavage of carotenoids and have important metabolic functions, such as plant hormones, pigments, aroma and scent compounds, as well as signaling compounds (Fig. 1). A well-known example is abscisic acid, which is a C15 compound derived from the cleavage of the 11,12 double bond of 9-cis-violaxanthin and 9′-cis-neoxanthin (Schwartz et al., 1997; Tan et al., 1997; Cutler and Krochko, 1999; Chernys and Zeevaart, 2000; Giuliano et al., 2003).Open in a separate windowFigure 1.Carotenoid and apocarotenoid metabolic pathway in plants. GGPP, Geranylgeranyl diphosphate. Enzymes, listed here from top to bottom, are named according to the designation of their genes: PSY, phytoene synthase; PDS, Phytoene desaturase; ZDS, ζ-carotene desaturase; ZISO, 15-cis-ζ-carotene isomerase; CRTISO, carotenoid isomerase; LCYb, lycopene β-cyclase; LCYe, lycopene ε-cyclase; HYe, ε-ring hydroxylase; HYb, β-ring hydroxylase; ZEP, zeaxanthin epoxidase; VDE, violaxanthin deepoxidase; NCED, 9-cis-epoxycarotenoid dioxygenase.Carotenoid cleavage dioxygenases (CCDs) are a group of enzymes that catalyze the oxidative cleavage of carotenoids (Ryle and Hausinger, 2002). CCDs are nonheme iron enzymes present in plants, bacteria, and animals. In plants, CCDs belong to an ancient and highly heterogenous family (CCD1, CCD4, CCD7, CCD8, and 9-cis-epoxycarotenoid dioxygenases [NCEDs]). The similarity among the different members is very low apart from four strictly conserved His residues and a few Glu residues (Kloer and Schulz, 2006; Walter et al., 2010). In Arabidopsis, the CCD family contains nine members (CCD1, NCED2, NCED3, CCD4, NCED5, NCED6, CCD7, CCD8, and NCED9), and orthologs in other plant species are typically named according to their homology with an Arabidopsis CCD (Huang et al., 2009). In our previous study, the functions of CitCCD1, CitNCED2, and CitNCED3 were investigated in citrus fruits (Kato et al., 2006). The recombinant CitCCD1 protein cleaved β-cryptoxanthin, zeaxanthin, and all-trans-violaxanthin at the 9,10 and 9′,10′ positions and 9-cis-violaxanthin at the 9′,10′ position. The recombinant CitNCED2 and CitNCED3 proteins cleaved 9-cis-violaxanthin at the 11,12 position to form xanthoxin, a precursor of abscisic acid (Kato et al., 2006). To date, information on the functions of other CCDs in citrus fruits remains limited, while the functions of CCD7 and CCD8, as well as NCED5, NCED6, and NCED9, in Arabidopsis have been characterized (Kloer and Schulz, 2006; Walter et al., 2010). In Arabidopsis, CCD7 cleaves all-trans-β-carotene at the 9′,10′ position to form all-trans-β-apo-10′-carotenal. All-trans-β-apo-10′-carotenal is further shortened by AtCCD8 at the 13,14 position to produce β-apo-13-carotenone (Alder et al., 2012). NCED5, NCED6, and NCED9 cleave 9-cis-violaxanthin at the 11,12 position to form xanthoxin (Tan et al., 2003). Compared with other CCDs, the function of CCD4 is poorly understood. In Chrysanthemum morifolium, CmCCD4a contributed to the white color formation by cleaving carotenoids into colorless compounds (Ohmiya et al., 2006). Recently, it has been reported that CsCCD4, CmCCD4a, and MdCCD4 could cleave β-carotene to yield β-ionone (Rubio et al., 2008; Huang et al., 2009).β-Citraurin, a C30 apocarotenoid, is a color-imparting pigment responsible for the reddish color of citrus fruits (Farin et al., 1983). In 1936, it was first discovered in Sicilian oranges (Cual, 1965). In citrus fruits, the accumulation of β-citraurin is not a common event; it is only observed in the flavedos of some varieties during fruit ripening. The citrus varieties accumulating β-citraurin are considered more attractive because of their red-orange color (Ríos et al., 2010). Although more than 70 years have passed since β-citraurin was first identified, the pathway of its biosynthesis is still unknown. As its structure is similar to that of β-cryptoxanthin and zeaxanthin, β-citraurin was presumed to be a degradation product of β-cryptoxanthin or zeaxanthin (Oberholster et al., 2001; Rodrigo et al., 2004; Ríos et al., 2010; Fig. 1). To date, however, the specific cleavage reaction producing β-citraurin has not been elucidated. In this study, we found that the CitCCD4 gene was involved in the synthesis of β-citraurin, using two citrus varieties of Satsuma mandarin (Citrus unshiu), Yamashitabeni-wase, which accumulates β-citraurin predominantly, and Miyagawa-wase, which does not accumulate β-citraurin. To confirm the role of the CitCCD4 gene further, functional analyses of the CitCCD4 enzyme were performed in vivo and in vitro. Additionally, the regulation of β-citraurin content and CitCCD4 gene expression in response to ethylene and red light-emitting diode (LED) light treatments was also examined. This study, to our knowledge, is the first to investigate the biosynthesis of β-citraurin in citrus fruits. The results might provide new strategies to enhance the nutritional and commercial qualities of citrus fruits.  相似文献   
99.
The blend miscibility of cellulose propionate (CP) with poly(N-vinyl pyrrolidone-co-methyl methacrylate) (P(VP-co-MMA)) was investigated. The degree of substitution (DS) of CP used ranged from 1.6 to >2.9, and samples for the vinyl polymer component were prepared in a full range of VP:MMA compositions. Through DSC analysis and solid-state 13C NMR and FT-IR measurements, we revealed that CPs of DS < 2.7 were miscible with P(VP-co-MMA)s of VP ≥ ∼10 mol% on a scale within a few nanometers, in virtue of hydrogen-bonding interactions between CP-hydroxyls and VP-carbonyls. When the DS of CP exceeded 2.7, the miscibility was restricted to the polymer pairs using P(VP-co-MMA)s of VP = ca. 10–40 mol%; the scale of mixing in the blends concerned was somewhat larger (ca. 5–20 nm), however. The appearance of such a “miscibility window” was interpretable as an effect of intramolecular repulsion in the copolymer component. Results of DMA and birefringence measurements indicated that the miscible blending of CP with the vinyl polymer invited synergistic improvements in thermomechanical and optical properties of the respective constituent polymers. Additionally, it was found that the VP:MMA composition range corresponding to the miscibility window was expanded by modification of the CP component into cellulose acetate propionate.  相似文献   
100.
Filaggrin protein is synthesized in the stratum granulosum of the skin and contributes to the formation of the human skin barrier. Profilaggrin is cleaved by proteolytic enzymes and converted to functional filaggrin, but its processing mechanism remains not fully elucidated. Kallikrein-related peptidase 5 (KLK5) is a major serine protease found in the skin, which is secreted from lamellar granules following its expression in the stratum granulosum and activated in the extracellular space of the stratum corneum. Here, we searched for profilaggrin-processing protease(s) by partial purification of epidermal extracts and found KLK5 as a possible candidate. We used high performance liquid chromatography coupled with electrospray tandem mass spectrometry to show that KLK5 cleaves profilaggrin. Furthermore, based on a proximity ligation assay, immunohistochemistry, and immunoelectron microscopy analysis, we reveal that KLK5 and profilaggrin co-localize in the stratum granulosum in human epidermis. KLK5 knockdown in normal cultured human epidermal keratinocytes resulted in higher levels of profilaggrin, indicating that KLK5 potentially functions in profilaggrin cleavage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号