首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3138篇
  免费   166篇
  3304篇
  2023年   6篇
  2022年   24篇
  2021年   48篇
  2020年   18篇
  2019年   38篇
  2018年   47篇
  2017年   42篇
  2016年   73篇
  2015年   85篇
  2014年   139篇
  2013年   185篇
  2012年   209篇
  2011年   216篇
  2010年   125篇
  2009年   119篇
  2008年   198篇
  2007年   181篇
  2006年   186篇
  2005年   182篇
  2004年   206篇
  2003年   203篇
  2002年   191篇
  2001年   37篇
  2000年   37篇
  1999年   47篇
  1998年   50篇
  1997年   37篇
  1996年   30篇
  1995年   47篇
  1994年   17篇
  1993年   22篇
  1992年   20篇
  1991年   27篇
  1990年   21篇
  1989年   18篇
  1988年   16篇
  1987年   14篇
  1986年   16篇
  1985年   19篇
  1984年   15篇
  1983年   15篇
  1982年   13篇
  1981年   5篇
  1980年   8篇
  1979年   6篇
  1978年   9篇
  1975年   4篇
  1973年   4篇
  1972年   4篇
  1966年   4篇
排序方式: 共有3304条查询结果,搜索用时 15 毫秒
61.
Proteose peptone (p.peptone) remarkably induced tissue plasminogen activator (t-PA) activity in the conditioned medium of confluently cultured human embryonic lung diploid fibroblast, IMR-90 cells, in a dose-dependent manner. t-PA activity correlated well with the amount of t-PA antigen found in the conditioned medium of IMR-90 cells stimulated by p.peptone. t-PA production by IMR-90 cells stimulated by p.peptone was dependent on extracellular Ca2+ concentration and maximum t-PA production required approximately 3.6 mM extracellular Ca2+. Conversely, elimination of Ca2+ from the culture medium by EGTA, Ca2+ chelate agent, strongly inhibited t-PA production induced by p.peptone. t-PA production induced by p.peptone was inhibited in a dose-dependent manner by Verapamil, which inhibits Ca2+ uptake through the slow channels and also by W-7, an inhibitor of calmodulin. These results suggested that influx of extracellular Ca2+ into IMR-90 cells was caused by p.peptone and induced t-PA production by the cells.  相似文献   
62.
The brain is considered to use a relatively small amount of energy for its efficient information processing. Under a severe restriction on the energy consumption, the maximization of mutual information (MMI), which is adequate for designing artificial processing machines, may not suit for the brain. The MMI attempts to send information as accurate as possible and this usually requires a sufficient energy supply for establishing clearly discretized communication bands. Here, we derive an alternative hypothesis for neural code from the neuronal activities recorded juxtacellularly in the sensorimotor cortex of behaving rats. Our hypothesis states that in vivo cortical neurons maximize the entropy of neuronal firing under two constraints, one limiting the energy consumption (as assumed previously) and one restricting the uncertainty in output spike sequences at given firing rate. Thus, the conditional maximization of firing-rate entropy (CMFE) solves a tradeoff between the energy cost and noise in neuronal response. In short, the CMFE sends a rich variety of information through broader communication bands (i.e., widely distributed firing rates) at the cost of accuracy. We demonstrate that the CMFE is reflected in the long-tailed, typically power law, distributions of inter-spike intervals obtained for the majority of recorded neurons. In other words, the power-law tails are more consistent with the CMFE rather than the MMI. Thus, we propose the mathematical principle by which cortical neurons may represent information about synaptic input into their output spike trains.  相似文献   
63.
64.
15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)) is one of factors contributed to the neurotoxicity of amyloid β (Aβ), a causative protein of Alzheimer's disease. Type 2 receptor for prostaglandin D(2) (DP2) and peroxysome-proliferator activated receptorγ (PPARγ) are identified as the membrane receptor and the nuclear receptor for 15d-PGJ(2), respectively. Previously, we reported that the cytotoxicity of 15d-PGJ(2) was independent of DP2 and PPARγ, and suggested that 15d-PGJ(2) induced apoptosis through the novel specific binding sites of 15d-PGJ(2) different from DP2 and PPARγ. To relate the cytotoxicity of 15d-PGJ(2) to amyloidoses, we performed binding assay [(3)H]15d-PGJ(2) and specified targets for 15d-PGJ(2) associated with cytotoxicity. In the various cell lines, there was a close correlation between the susceptibilities to 15d-PGJ(2) and fibrillar Aβ. Specific binding sites of [(3)H]15d-PGJ(2) were detected in rat cortical neurons and human bronchial smooth muscle cells. When the binding assay was performed in subcellular fractions of neurons, the specific binding sites of [(3)H]15d-PGJ(2) were detected in plasma membrane, nuclear and cytosol, but not in microsome. A proteomic approach was used to identify protein targets for 15d-PGJ(2) in the plasma membrane. By using biotinylated 15d-PGJ(2), eleven proteins were identified as biotin-positive spots and classified into three different functional proteins: glycolytic enzymes (Enolase2, pyruvate kinase M1 (PKM1) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)), molecular chaperones (heat shock protein 8 and T-complex protein 1 subunit α), cytoskeletal proteins (Actin β, F-actin-capping protein, Tubulin β and Internexin α). GAPDH, PKM1 and Tubulin β are Aβ-interacting proteins. Thus, the present study suggested that 15d-PGJ(2) plays an important role in amyloidoses not only in the central nervous system but also in the peripheral tissues.  相似文献   
65.
An early investigation at the Biosphere-2 Laboratory, an artificial ecosystem in the Arizona desert, had shown that the flavonoid content of cacti grown in glass-filtered solar light was lower than of cacti grown in normal solar light. This was attributed to the absence of ultraviolet (UV) radiation, which is required for flavonoid biosynthesis. In this study, two species of Opuntia cacti were grown in solar and UV-depleted light, and their flavonol contents of different tissues were determined by HPLC. O. wilcoxii, previously raised in the absence of UV light, was exposed to normal solar light. The flavonol content of young O. wilcoxii pads was 28-fold higher when grown in solar light as compared to UV-depleted light. The flavonol contents of mature outer tissues were only slightly higher. O. violacea, previously raised in solar light, was also maintained in the same UV-depleted artificial ecosystem. The flavonol content after hydrolysis of outer tissues was similar, whether grown in solar light or UV-depleted light. We attribute these responses to different biosynthetic and metabolic rates of young vs. mature plant tissues; slow-growing mature tissues neither produce nor metabolize compounds as quickly as immature tissues. These findings indicate that artificial ecosystems can influence the production of natural products in cultivated plants.  相似文献   
66.
67.

Background

Ionizing irradiation causes not only growth arrest and cell death, but also release of growth factors or signal transmitters, which promote cancer malignancy. Extracellular ATP controls cancer growth through activation of purinoceptors. However, there is no report of radiation-induced ATP release from cancer cells. Here, we examined γ-irradiation-induced ATP release and its mechanism in B16 melanoma.

Methods

Extracellular ATP was measured by luciferin–luciferase assay. To investigate mechanism of radiation-induced ATP release, we pharmacologically inhibited the ATP release and established stable P2X7 receptor-knockdown B16 melanoma cells using two short hairpin RNAs targeting P2X7 receptor.

Results

Cells were exposed to 0.5–8 Gy of γ-rays. Extracellular ATP was increased, peaking at 5 min after 0.5 Gy irradiation. A selective P2X7 receptor channel antagonist, but not anion transporter inhibitors, blocked the release of ATP. Further, radiation-induced ATP release was significantly decreased in P2X7 receptor-knockdown cells. Our results indicate that γ-irradiation evokes ATP release from melanoma cells, and P2X7 receptor channel plays a significant role in mediating the ATP release.

General Significance

We suggest that extracellular ATP could be a novel intercellular signaling molecule released from cancer cells when cells are exposed to ionizing radiation.  相似文献   
68.

Background

Duplicated genes frequently experience asymmetric rates of sequence evolution. Relaxed selective constraints and positive selection have both been invoked to explain the observation that one paralog within a gene-duplicate pair exhibits an accelerated rate of sequence evolution. In the majority of studies where asymmetric divergence has been established, there is no indication as to which gene copy, ancestral or derived, is evolving more rapidly. In this study we investigated the effect of local synteny (gene-neighborhood conservation) and codon usage on the sequence evolution of gene duplicates in the S. cerevisiae genome. We further distinguish the gene duplicates into those that originated from a whole-genome duplication (WGD) event (ohnologs) versus small-scale duplications (SSD) to determine if there exist any differences in their patterns of sequence evolution.

Results

For SSD pairs, the derived copy evolves faster than the ancestral copy. However, there is no relationship between rate asymmetry and synteny conservation (ancestral-like versus derived-like) in ohnologs. mRNA abundance and optimal codon usage as measured by the CAI is lower in the derived SSD copies relative to ancestral paralogs. Moreover, in the case of ohnologs, the faster-evolving copy has lower CAI and lowered expression.

Conclusions

Together, these results suggest that relaxation of selection for codon usage and gene expression contribute to rate asymmetry in the evolution of duplicated genes and that in SSD pairs, the relaxation of selection stems from the loss of ancestral regulatory information in the derived copy.  相似文献   
69.
70.
We examined whether the brain beta 3-adrenergic receptor (B3-AR) is involved in the feeding regulation of chicks. Intracerebroventricular (ICV) injection of BRL37344, a B3-AR agonist, reduced food intake of chicks under ad libitum, but not fasting, feeding conditions. The ICV injection of BRL37344 did not affect chick posture or locomotion activity suggesting that BRL37344 inhibited feeding without induction of sleep-like behavior as caused by norepinephrine. Furthermore, the rectal temperature increased following the ICV injection of BRL37344. Intraperitoneal administration of BRL37344 did not reduce food intake under ad libitum feeding condition. The present study demonstrated that the brain B3-AR is involved in the inhibition of feeding in chicks. We also suggested that activation of the brain affects the energy metabolism in chicks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号