首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4429篇
  免费   279篇
  国内免费   1篇
  4709篇
  2022年   22篇
  2021年   49篇
  2020年   22篇
  2019年   28篇
  2018年   46篇
  2017年   42篇
  2016年   74篇
  2015年   154篇
  2014年   172篇
  2013年   263篇
  2012年   239篇
  2011年   258篇
  2010年   160篇
  2009年   172篇
  2008年   241篇
  2007年   252篇
  2006年   278篇
  2005年   267篇
  2004年   298篇
  2003年   254篇
  2002年   220篇
  2001年   104篇
  2000年   84篇
  1999年   93篇
  1998年   57篇
  1997年   49篇
  1996年   38篇
  1995年   41篇
  1994年   33篇
  1993年   29篇
  1992年   70篇
  1991年   57篇
  1990年   56篇
  1989年   42篇
  1988年   48篇
  1987年   37篇
  1986年   40篇
  1985年   40篇
  1984年   30篇
  1983年   23篇
  1982年   24篇
  1981年   27篇
  1980年   16篇
  1979年   28篇
  1978年   23篇
  1977年   18篇
  1976年   16篇
  1975年   9篇
  1974年   10篇
  1968年   8篇
排序方式: 共有4709条查询结果,搜索用时 15 毫秒
91.
We investigated the effects of interruption of the impulse flow in the habenulopeduncular pathways by local infusion of tetrodotoxin on the acetylcholine and choline content in selected dopamine rich regions in the forebrain and midbrain in rats. The tetrodotoxin infusion caused a marked increase in acetylcholine content in the medial frontal cortex, striatum and ventral tegmental area+interpeduncular nucleus, but not in the limbic area or the substantia nigra, whereas choline content was reduced only in both the striatum and ventral tegmental area+interpeduncular nucleus. There was an increase in 3,4-dihydroxyphenylacetic acid content in the striatum after the manipulation. These findings suggest that the dorsal diencephalic conduction system may be involved in the integration of the activity of cholinergic neurons in the forebrain and midbrain regions and striatal dopanine neurons may play a role in the modulation of cholinergic neurons.  相似文献   
92.
It has been of much interest whether there is functional redundancy between the constitutively signaling pre-Talpha/TCRbeta (pre-TCR) and ligated TCRalphabeta complexes, which independently operate the two distinct checkpoints during thymocyte development, i.e., the pre-TCR involved in beta-selection at the CD4(-)CD8(-) double-negative stage and the TCRalphabeta being crucial for positive/negative selection at the CD4(+)CD8(+) double-positive stage. We found that the pre-TCR expressed on double-positive cells in TCRalpha-deficient (TCRalpha(-/-)) mice produced a small number of mature CD8(+) T cells. Surprisingly, when pre-Talpha was overexpressed, resulting in augmentation of pre-TCR expression, there was a striking increase of the CD8(+) T cells. In addition, even in the absence of up-regulation of pre-TCR expression, a similar increase of CD8(+) T cells was also observed in TCRalpha(-/-) mice overexpressing Egr-1, which lowers the threshold of signal strength required for positive selection. In sharp contrast, the CD8(+) T cells drastically decreased in the absence of pre-Talpha on a TCRalpha(-/-) background. Thus, the pre-TCR appears to functionally promote positive selection of CD8(+) T cells. The biased production of CD8(+) T cells via the pre-TCR might also support the potential involvement of signal strength in CD4/CD8 lineage commitment.  相似文献   
93.
Induction of osteoblast differentiation indices by statins in MC3T3-E1 cells   总被引:11,自引:0,他引:11  
Statins inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which catalyzes conversion of HMG-CoA to mevalonate, a rate-limiting step in cholesterol synthesis. The present study was undertaken to understand the events of osteoblast differentiation induced by statins. Simvastatin at 10(-7) M markedly increased mRNA expression for bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), alkaline phosphatase, type I collagen, bone sialoprotein, and osteocalcin (OCN) in nontransformed osteoblastic cells (MC3T3-E1), while suppressing gene expression for collagenase-1, and collagenase-3. Extracellular accumulation of proteins such as VEGF, OCN, collagenase-digestive proteins, and noncollagenous proteins was increased in the cells treated with 10(-7) M simvastatin, or 10(-8) M cerivastatin. In the culture of MC3T3-E1 cells, statins stimulated mineralization; pretreating MC3T3-E1 cells with mevalonate, or geranylgeranyl pyrophosphate (a mevalonate metabolite) abolished statin-induced mineralization. Statins stimulate osteoblast differentiation in vitro, and may hold promise drugs for the treatment of osteoporosis in the future.  相似文献   
94.
95.
96.
Persistent and stable expression of foreign genes has been achieved in mammalian cells by integrating the genes into the host chromosomes. However, this approach has several shortcomings in practical applications. For example, large scale production of protein pharmaceutics frequently requires laborious amplification of the inserted genes to optimize the gene expression. The random chromosomal insertion of exogenous DNA also results occasionally in malignant transformation of normal tissue cells, raising safety concerns in medical applications. Here we report a novel cytoplasmic RNA replicon capable of expressing installed genes stably without chromosome insertion. This system is based on the RNA genome of a noncytopathic variant Sendai virus strain, Cl.151. We found that this variant virus establishes stable symbiosis with host cells by escaping from retinoic acid-inducible gene I-interferon regulatory factor 3-mediated antiviral machinery. Using a cloned genome cDNA of Sendai virus Cl.151, we developed a recombinant RNA installed with exogenous marker genes that was maintained stably in the cytoplasm as a high copy replicon (about 4 x 10(4) copies/cell) without interfering with normal cellular function. Strong expression of the marker genes persisted for more than 6 months in various types of cultured cells and for at least two months in rat colonic mucosa without any apparent side effects. This stable RNA replicon is a potentially valuable genetic platform for various biological applications.  相似文献   
97.
We have recently reported that attenuated phosphorylation of heat shock protein (HSP) 27 correlates with tumor progression in patients with hepatocellular carcinoma (HCC). In the present study, we investigated what kind of kinase regulates phosphorylation of HSP27 in human HCC-derived HuH7 cells. 12-O-tetradecanoylphorbol-13-acetate (TPA) and 1-oleoyl-2-acetylglycerol, direct activators of protein kinase C (PKC), markedly strengthened the phosphorylation of HSP27. Bisindorylmaleimide I, an inhibitor of PKC, suppressed the TPA-induced levels of HSP27 phosphorylation in addition to its basal levels. Knock down of PKCdelta suppressed HSP27 phosphorylation, as well as p38 mitogen-activated protein kinase (MAPK) phosphorylation. SB203580, an inhibitor of p38 MAPK, suppressed the TPA-induced HSP27 phosphorylation. Our results strongly suggest that activation of PKCdelta regulates the phosphorylation of HSP27 via p38 MAPK in human HCC.  相似文献   
98.
Hosoi T  Hyoda K  Okuma Y  Nomura Y  Ozawa K 《Cell research》2007,17(2):184-186
Dear Editor: Geldanamycin is a benzoquinone ansamycin, which was originally described as a tyrosine kinase inhibitor. However, subsequent studies have revealed that geldanamycin binds to and inhibits heat-shock protein 90 (Hsp90) activity [1]. Hsp90 is a molecular chaperone involved in the conformational maturation of proteins such as mutated p53, Raf- 1, Akt, Bcr-Abl, and ErbB2. It is suggested that agents inhibiting Hsp90 have anti-cancer properties, although the precise molecular mechanisms underlying the anti-cancer effects of geldanamycin are not well understood.  相似文献   
99.
Human natural killer-1 (HNK-1) carbohydrate is highly expressed in the nervous system and is involved in synaptic plasticity and dendritic spine maturation. This unique carbohydrate, consisting of a sulfated trisaccharide (HSO(3)-3GlcAβ1-3Galβ1-4GlcNAc-), is biosynthesized by the successive actions of β-1,4-galactosyltransferase (β4GalT), glucuronyltransferase (GlcAT-P and GlcAT-S), and sulfotransferase (HNK-1ST). A previous study showed that mice lacking β4GalT-II, one of seven β4GalTs, exhibited a dramatic loss of HNK-1 expression in the brain, although β4GalT-I-deficient mice did not. Here, we investigated the underlying molecular mechanism of the regulation of HNK-1 expression. First, focusing on a major HNK-1 carrier, neural cell adhesion molecule, we found that reduced expression of an N-linked HNK-1 carbohydrate caused by a deficiency of β4GalT-II is not likely due to a general loss of the β1,4-galactose residue as an acceptor for GlcAT-P. Instead, we demonstrated by co-immunoprecipitation and endoplasmic reticulum-retention analyses using Neuro2a (N2a) cells that β4GalT-II physically and specifically associates with GlcAT-P. In addition, we revealed by pulldown assay that Golgi luminal domains of β4GalT-II and GlcAT-P are sufficient for the complex to form. With an in vitro assay system, we produced the evidence that the kinetic efficiency k(cat)/K(m) of GlcAT-P in the presence of β4GalT-II was increased about 2.5-fold compared with that in the absence of β4GalT-II. Finally, we showed that co-expression of β4GalT-II and GlcAT-P increased HNK-1 expression on various glycoproteins in N2a cells, including neural cell adhesion molecule. These results indicate that the specific enzyme complex of β4GalT-II with GlcAT-P plays an important role in the biosynthesis of HNK-1 carbohydrate.  相似文献   
100.
The anaerobic free-living ciliate, Trimyema compressum, is known to harbor both methanogenic archaeal and bacterial symbionts in the cytoplasm. To clarify their phylogenetic belongings, a full-cycle rRNA approach was applied to this symbiosis. Phylogenetic analysis showed that the methanogenic symbiont was related to Methanobrevibacter arboriphilicus, which was distantly related to symbionts found in other Trimyema species. This result suggested that Trimyema species do not require very specific methanogenic symbionts, and symbiont replacement could have occurred in the history of Trimyema species. On the other hand, the bacterial symbiont was located near the lineage of the family Syntrophomonadaceae in the phylum Firmicutes. The sequence similarity between the bacterial symbiont and the nearest species was 85%, indicating that bacterial symbionts may be specific to the Trimyema species. The elimination of bacterial symbionts from the ciliate cell by antibiotic treatment resulted in considerably decreased host growth. However, it was not restored by stigmasterol addition (<2 μg ml−1), which was different from the previous report that showed that the symbiont-free strain required exogenous sterols for growth. In addition, the decline of host growth was not accompanied by host metabolism shift toward the formation of more reduced products, which suggested that the contribution of bacterial symbionts to the host ciliate was not a dispose of excessive reducing equivalent arising from the host’s fermentative metabolism as methanogenic symbionts do. This study showed that bacterial symbionts make a significant contribution to the host ciliate by an unknown function and suggested that interactions between bacterial symbionts and T. compressum are more complicated than hitherto proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号