首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4568篇
  免费   290篇
  2022年   21篇
  2021年   42篇
  2020年   21篇
  2019年   33篇
  2018年   47篇
  2017年   48篇
  2016年   82篇
  2015年   142篇
  2014年   141篇
  2013年   283篇
  2012年   281篇
  2011年   286篇
  2010年   179篇
  2009年   168篇
  2008年   268篇
  2007年   263篇
  2006年   288篇
  2005年   264篇
  2004年   275篇
  2003年   254篇
  2002年   240篇
  2001年   106篇
  2000年   80篇
  1999年   81篇
  1998年   57篇
  1997年   54篇
  1996年   55篇
  1995年   53篇
  1994年   37篇
  1993年   35篇
  1992年   74篇
  1991年   65篇
  1990年   56篇
  1989年   45篇
  1988年   38篇
  1987年   38篇
  1986年   40篇
  1985年   33篇
  1984年   34篇
  1983年   21篇
  1982年   24篇
  1981年   33篇
  1980年   24篇
  1979年   21篇
  1978年   22篇
  1977年   19篇
  1976年   14篇
  1975年   13篇
  1974年   9篇
  1970年   7篇
排序方式: 共有4858条查询结果,搜索用时 296 毫秒
71.
A recombinant plasmid which contained a gene for diphtheria toxin A-chain (DT-A) under the control of the long terminal repeat (LTR) of bovine leukemia virus (BLV) (BLV-LTR) was constructed to test a novel application of liposomes as antiviral agents. The promoter activity of BLV-LTR was estimated by the chloramphenicol acetyltransferase (CAT) assay using a plasmid which contains the coding sequence of CAT under the control of BLV-LTR (pBLVCAT). When BLV-infected cells were transfected with pBLVCAT, CAT activity was detected. BLV-uninfected cell lines, however, showed no detectable CAT activity. The plasmid DNA entrapped in liposomes was added to BLV-infected cells in culture. Syncytium formation induced by BLV-infected cells was effectively suppressed by the liposomes containing the gene for DT-A under the control of BLV-LTR. Conversely, liposomes containing the gene for DT-A without a promoter showed no such effect. DT-A gene-containing liposomes with BLV-LTR did not affect formation of syncytium induced by bovine immunodeficiency virus. These observations indicate that BLV-infected cells were readily targeted on the level of gene expression. This strategy could be applied to the treatment of BLV-induced B-cell proliferation of cattle, and further to other viral/neoplastic diseases where specific gene expression is exerted.  相似文献   
72.
The concanavalin A staining of cellular glycoproteins and thedirect analysis of their sugar chains released by hydrazinolysisrevealed that the processing of N-linked sugar chains of someglycoproteins is suppressed by exposure of mouse monocytoidcells P388D1 to dimethyl sulphoxide, which can induce Fc receptor-mediatedphagocytosis. To elucidate the significance of altered glycosylationin inducing phagocytosis, the effects of exposure of the cellsto processing inhibitors (swainsonine and castanospermine) wereexamined and it was found that the cells are induced to acquirean ability to ingest IgG-coated sheep red blood cells, dependingon the dose of the inhibitors and incubation time. Analysisof the N-linked sugar chains liberated from cellular glycoproteinsby hydrazinolysis confirmed that the processing of the sugarchains is suppressed by the two inhibitors as expected. Sinceno significant alteration was induced in protein synthesis andDNA synthesis after exposure to the inhibitors, it is suggestedthat the altered glycosylation of cellular glycoproteins mayhave some direct role in the induction of Fc receptor-mediatedphagocytosis. The inhibitors did not affect the binding of theIgG-coated red blood cells to Fc receptors on the cells, non-specificphagocytosis of latex beads, and the contents of lysosomal enzymes,ß-glucuronidase and acid phosphatase. These resultssuggest that the glycosylation status of cellular glycoproteinsinfluences some specific processes involved in the ingestionof the ligands bound to Fc receptors. castanospermine macrophages phagocytosis swainsonine  相似文献   
73.
Cell cycle progression of synchronized HeLa cells was studied by measuring labeling of the nuclei with [3H]thymidine. The progression was arrested in a chemically defined medium in which K+ was replaced by Rb+ (Rb-CDM) but was restored upon addition of insulin and/or low density lipoprotein (LDL). Cells started DNA synthesis 12 hr after addition of insulin and/or LDL, regardless of the time of arrest, suggesting their arrest early in the G1 phase. After incubation of cells in Rb-CDM containing insulin or LDL singly for 3, 6, or 9 hr, replacement of the medium by that without an addition resulted in marked delay in entry of cells into the S phase, but in its replacement by medium containing both agents, the delay was insignificant. Synthesis of bulk protein, estimated as increase in the cell volume, was not strongly inhibited. From these results we conclude that cell cycle progression of HeLa cells in K?-depleted CDM is arrested early in the G1 phase and that the arrest is due to lack of some protein(s) required for entry into the S phase that is synthesized in the early G1 phase.  相似文献   
74.
Summary Germination ofBacillus subtilis spores was initiated by L-Ala and competitively inhibited by D-Ala, suggesting the presence of an alanine receptor. The spores showed alanine racemase activity in the spore coat. To investigate the role of alanine racemase (L D) on germination, net racemase activity was determined using diphenylamine as a germination inhibitor and germination was measured using D-penicillamine as a racemase inhibitor. Apparent affinity of L-Ala to the germinant receptor was more than 1000 times higher than that to the racemase. Germination increased in the presence of D-penicillamine, when the concentration of L-Ala was low and that of spores was high. Racemase activity was optimal at 65°C at pH 9.0 and germination at 43°C at pH 7.2. Under unfavorable growth conditions such as high population of spores in limited nutrients, high temperature and high pH, spore alanine racemase converted the germinant actively to the inhibitor and this conversion may regulate germination for survival of the population.  相似文献   
75.
76.
Expression of the umuDC operon is required for UV and most chemical mutagenesis in Escherichia coli. The closely related species Salmonella typhimurium has two sets of umuDC-like operons, umuDC ST on the chromosome and samAB on a 60-MDa cryptic plasmid. The roles of theumuDC-like operons in chemically induced frameshift mutagenesis of the hisD3052 allele of S. typhimurium were investigated. Introduction of a pBR322-derived plasmid carrying umuDCST increased the rate of reversion of hisD3052, following treatment with 1-nitropyrene (1-NP) or 1,8-dinitropyrene (1,-8DNP) tenfold and fivefold, respectively, whereas it did not substantially increase the rate of reversion induced by other frameshift mutagens, i.e. 2-nitrofluorene (2NF) and 2-amino- 3-methyldipyrido[1,2-a:3 ,2-d]imi-dazole (Glu-P-1). Introduction of a pBR322-derived plasmid carrying samAB did not increase the incidence of reversion of hisD3052 observed with any of the mutagens examined. Deletion of umuDC STSubstantially lowered the reversion rate induced by l-NP or 1,8-DNP, but it did not affect reversion induced by 2-NF, Glu-P-1 or N-hydroxyacetylaminofluorene (N-OH-AAF). Deletion of samAB had little impact on reversion incidence induced by any of the five frameshift mutagens. DNA amplification using the polymerase chain reaction technique followed by restriction enzyme analysis using BssHII, suggested that the mutations induced by the five frameshift mutagens were all CG deletions at the CGCGCGCG sequence in hisD3052. These results suggest that umuDCST, but not samAB, is involved in the -2 frameshift mutagenesis induced by l-NP and 1,8-DNP at the repetitive CG sequence, whereas neither operon participates in induction of the same type of mutations by 2-NF, Glu-P-1 or N-OH-AAF.  相似文献   
77.
A cDNA (cNPK2) that encodes a protein of 518 amino acids was isolated from a library prepared from poly(A)+ RNAs of tobacco cells in suspension culture. The N-terminal half of the predicted NPK2 protein is similar in amino acid sequence to the catalytic domains of kinases that activate mitogen-activated protein kinases (designated here MAPKKs) from various animals and to those of yeast homologs of MAPKKs. The N-terminal domain of NPK2 was produced as a fusion protein in Escherichia coli, and the purified fusion protein was found to be capable of autophosphorylation of threonine and serine residues. These results indicate that the N-terminal domain of NPK2 has activity of a serine/threonine protein kinase. Southern blot analysis showed that genomic DNAs from various plant species, including Arabidopsis thaliana and sweet potato, hybridized strongly with cNPK2, indicating that these plants also have genes that are closely related to the gene for NPK2. The structural similarity between the catalytic domain of NPK2 and those of MAPKKs and their homologs suggests that tobacco NPK2 corresponds to MAPKKs of other organisms. Given the existence of plant homologs of an MAP kinase and tobacco NPK1, which is structurally and functionally homologous to one of the activator kinases of yeast homologs of MAPKK (MAPKKKs), it seems likely that a signal transduction pathway mediated by a protein kinase cascade that is analogous to the MAP kinase cascades proposed in yeasts and animals, is also conserved in plants.  相似文献   
78.
Large palindromic DNAs are found in a wide variety of eukaryotic cells. In Tetrahymena thermophila, a large palindrome is formed from a single rRNA gene (rDNA) during nuclear differentiation. We present evidence that a key step in the formation of the rDNA palindrome of T. thermophila involves homologous intramolecular recombination. Heteroduplex micronuclear rDNA molecules were constructed in vitro and microinjected into developing macronuclei, where they formed palindromes. Analysis of the resulting palindromes indicated that both strands of the microinjected rDNA are used to form the same palindrome. This study, together with a previous study (L. F. Yasuda and M.-C. Yao, Cell 67:505-516, 1991), is the first to define a molecular pathway of palindrome formation. The process is initiated by chromosome breakage at sites flanking the micronuclear rDNA. An intramolecular recombination reaction, guided by a pair of short inverted repeats located at the 5' end of the excised rDNA, covalently joins the two strands of micronuclear rDNA in a giant hairpin molecule. Bidirectional DNA replication converts the giant hairpin molecule to a palindrome. We suggest that the general features of this pathway are applicable to palindrome formation in other cell types.  相似文献   
79.
We examined some characteristics of hydrolyticenzymes, especially -1,3-glucanase, to obtain theinformation of cell wall lytic enzymes forrotifers.Crude enzyme (ammonium sulfate fraction) of rotifershydrolyzed starch, -1,3-glucan, glycol chitinand CM-cellulose. Optimum pH for hydrolysis ofstarch and CM-cellulose was 6.5, and that for -1,3glucan and glycol chitin was pH 6.0. Pectic acid,xylan and agarose were not hydrolyzed at pH 3–10.-1,3 glucanase was purified about 73-fold from crudeenzyme by ion-exchange chromatography and gelfiltration. Optimum pH and temperature of the enzymewere 6 and 60 °C, respectively. The molecular weight ofthe enzyme was estimated about 260 kDa by gelfiltration. The enzyme was inhibited byHgCl2 and MnCl_2.  相似文献   
80.
Abstract: Three isoforms of catalytic α subunits and two isoforms of β subunits of Na+,K+-ATPase were detected in rat sciatic nerves by western blotting. Unlike the enzyme in brain, sciatic nerve Na+,K+-ATPase was highly resistant to ouabain. The ouabain-resistant α1 isoform was demonstrated to be the predominant form in rat intact sciatic nerve by quantitative densitometric analysis and is mainly responsible for sciatic nerve Na+,K+-ATPase activity. After sciatic nerve injury, the α3 and β1 isoforms completely disappeared from the distal segment owing to Wallerian degeneration. In contrast, α2 and β2 isoform expression and Na+,K+-ATPase activity sensitive to pyrithiamine (a specific inhibitor of the α2 isoform) were markedly increased in Schwann cells in the distal segment of the injured sciatic nerve. These latter levels returned to baseline with nerve regeneration. Our results suggest that α3 and β1 isoforms are exclusive for the axon and α2 and β2 isoforms are exclusive for the Schwann cell, although axonal contact regulates α2 and β2 isoform expressions. Because the β2 isoform of Na+,K+-ATPase is known as an adhesion molecule on glia (AMOG), increased expression of AMOG/β2 on Schwann cells in the segment distal to sciatic nerve injury suggests that AMOG/β2 may act as an adhesion molecule in peripheral nerve regeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号