首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   19篇
  296篇
  2024年   6篇
  2023年   8篇
  2022年   13篇
  2021年   11篇
  2020年   8篇
  2019年   11篇
  2018年   16篇
  2017年   3篇
  2016年   15篇
  2015年   22篇
  2014年   18篇
  2013年   15篇
  2012年   24篇
  2011年   29篇
  2010年   8篇
  2009年   9篇
  2008年   19篇
  2007年   11篇
  2006年   5篇
  2005年   15篇
  2004年   8篇
  2003年   7篇
  2002年   10篇
  2001年   2篇
  1993年   2篇
  1991年   1篇
排序方式: 共有296条查询结果,搜索用时 15 毫秒
21.
The prevalence of obesity is increasing at an alarming rate, but, unfortunately, only a few drugs are currently available on the market. In the present study, the methanolic extract of Ginkgo biloba L. (Ginkgoaceae) was investigated as an inhibitor of pancreatic lipase (PL) in an attempt to explain its hypolipidaemic activity. In vitro assay of G. biloba leaves extract revealed a substantial PL inhibition activity (IC(50)?=?16.5 μg/mL). Further investigation was performed by employing theoretical docking simulations and experimental testing to uncover the active constituents responsible for G. biloba anti-lipase activity. Virtually, terpene trilactones, including ginkgolides and bilobalide, were found to fit within the binding pocket of PL via several attractive interactions with key amino acids. Experimentally, ginkgolides A, B, and bilobalide were found to inhibit PL significantly (IC(50)?=?22.9, 90.0, and 60.1 μg/mL, respectively). Our findings demonstrated that the hypolipidaemic effects of G. biloba extract can be attributed to the inhibition of PL by, at least in part, terpene trilactones. In conclusion, this work can be considered a new step towards the discovery of new natural safe hypolipidaemic PL inhibitors.  相似文献   
22.
Plant cells are able to perform most of the post-translational modifications that are required by recombinant proteins to achieve adequate bioactivity and pharmacokinetics. However, regarding N-glycosylation the processing of plant N-glycans in the Golgi apparatus displays major differences when compared with that of mammalian cells. These differences in N-glycosylation are expected to influence serum clearance rate of plant-derived monoclonal antibodies. The monoclonal antibody against the hepatitis B virus surface antigen expressed in Nicotiana tabacum leaves without KDEL endoplasmic reticulum (ER) retention signal (CB.Hep1(-)KDEL) and with a KDEL (Lys-Asp-Glu-Leu) fused to both IgG light and heavy chains (CB.Hep1(+)KDEL) were tested for in vivo stability in mice. Full characterization of N-glycosylation and aggregate formation in each monoclonal antibody batch was determined. The mouse counterpart (CB.Hep1) was used as control. Both (CB.Hep1(-)KDEL) and (CB.Hep1(+)KDEL) showed a faster initial clearance rate (first 24 h) compared with the analogous murine antibody while the terminal phase was similar in the three antibodies. Despite the differences between CB.Hep1(+)KDEL and CB.Hep1(-)KDEL N-glycans, the in vivo elimination in mice was indistinguishable from each other and higher than the murine monoclonal antibody. Molecular modelling confirmed that N-glycans linked to plantibodies were oriented away from the interdomain region, increasing the accessibility of the potential glycan epitopes by glycoprotein receptors that might be responsible for the difference in stability of these molecules.  相似文献   
23.
Ovarian cancer continues to be a difficult medical issue that affects millions of individuals worldwide. Important platforms for cancer immunotherapy include checkpoint inhibitors, chimeric antigen receptor T cells, bispecific antibodies, cancer vaccines, and other cell-based treatments. To avoid numerous infectious illnesses, conventional vaccinations based on synthetic peptides, recombinant subunit vaccines, and live attenuated and inactivated pathogens are frequently utilized. Vaccine manufacturing processes, however, are not entirely safe and carry a significant danger of contaminating living microorganisms. As a result, the creation of substitute vaccinations is required for both viral and noninfectious illnesses, including cancer. Recently, there has been testing of nucleic acid vaccines, or NAVs, as a cancer therapeutic. Tumor antigens (TAs) are genetically encoded by DNA and mRNA vaccines, which the host uses to trigger immune responses against ovarian cancer cells that exhibit the TAs. Despite being straightforward, safe, and easy to produce, NAVs are not currently thought to be an ideal replacement for peptide vaccines. Some obstacles to this strategy include selecting the appropriate therapeutic agents (TAs), inadequate immunogenicity, and the immunosuppressive characteristic of ovarian cancer. We focus on strategies that have been employed to increase NAVs' effectiveness in the fight against ovarian cancer in this review.  相似文献   
24.
Assessment of patterns of flow in the small bowel is difficult. Multiple intraluminal impedance has been recently used for study of flow dynamics in the esophagus. Our aims were 1) to validate multiple intraluminal impedance by correlating impedance events with intestinal flow as detected by fluoroscopy and 2) to determine intestinal flow patterns in the fasting and postprandial period and their correspondence with manometry. First, six healthy subjects underwent simultaneous video-fluoroscopic, manometric, and impedance recording from the duodenum. Videofluoroscopy was used to validate impedance patterns corresponding with barium flow in the fasting and postprandial periods. Next, 16 healthy subjects underwent prolonged simultaneous recording of impedance and manometry in both periods. Most flow events were short (10 cm or less), with antegrade flow being the most common. Correspondence between impedance and videofluoroscopy increased with increasing length of barium flow. Impedance corresponded better with flow, at any distance, than manometry. However, impedance and manometric events, when analyzed separately as index events, always corresponded with fluoroscopic flow. The fasting and postprandial periods showed comparable patterns of flow, with frequent, highly propulsive manometric and impedance sequences. Motility index was positively and significantly associated with length of impedance events. Phase 3 of the migrating motor complex could be easily recognized by impedance. Multiple intraluminal impedance can detect intestinal flow events and corresponds better with fluoroscopic flow than manometry.  相似文献   
25.
Protamylasse is a residual compound occurring during the industrial production of starch from potatoes. It contains a variety of nutrients and all necessary minerals and could be used as a carbon, nitrogen, and energy source for the growth of bacteria and also for cyanophycin (CGP) biosynthesis. Media containing protamylasse as the sole compound diluted only in water were therefore examined for their suitability in CGP production. Among various bacterial strains investigated in this study, a recombinant strain of Escherichia coli DH1 harboring plasmid pMa/c5-914::cphA6803, which carries the cyanophycin synthetase structural gene (cphA) from Synechocystis sp. strain PCC6803, was found to be most suitable. Various cultivation conditions for high CGP contents were first optimized in shake flask cultures. The optimized conditions were then successfully applied to 30- and 500-liter fermentation scales in stirred tank reactors. A maximum CGP content of 28% (wt/wt) CGP per cell dry matter was obtained in 6% (vol/vol) protamylasse medium at an initial pH of 7.0 within a cultivation period of only 24 h. The CGP contents obtained with this recombinant strain employing protamylasse medium were higher than those obtained with the same strain cultivated in mineral salts medium or in expensive commercial complex media such as Luria-Bertani or Terrific broth. It was shown that most amino acids present in the protamylasse medium were almost completely utilized by the cells during cultivation. Exceptions were alanine, tryptophan, tyrosine, and most interestingly, arginine. Furthermore, CGP was easily isolated from protamylasse-grown cells by applying the acid extraction method. The CGP exhibited a molecular mass of about 26 to 30 kDa and was composed of 50% (mol/mol) aspartate, 46% (mol/mol) arginine, and 4% (mol/mol) lysine. The use of cheap residual protamylasse could contribute in establishing an economically and also ecologically feasible process for the biotechnological production of CGP.  相似文献   
26.
The CiaR/H two-component system is involved in regulating virulence and competence in Streptococcus pneumoniae. The system is known to regulate many genes, including that for high-temperature requirement A (HtrA). This gene has been implicated in the ability of the pneumococcus to colonize the nasopharynx of infant rats. We reported previously that deletion of the gene for HtrA made the pneumococcal strains much less virulent in mouse models, less able to grow at higher temperatures, and more sensitive to oxidative stress. In this report, we show that the growth phenotype as well as sensitivity to oxidative stress of Delta ciaR mutant was very similar to that of a Delta htrA mutant and that the expression of the HtrA protein was reduced in a ciaR-null mutant. Both the in vitro phenotype and the reduced virulence of Delta ciaR mutant could be restored by increasing the expression of HtrA.  相似文献   
27.
To study the importance of arginine provision and phosphate limitation for synthesis and accumulation of cyanophycin (CGP) in Acinetobacter sp. strain ADP1, genes encoding the putative arginine regulatory protein (argR) and the arginine succinyltransferase (astA) were inactivated, and the effects of these mutations on CGP synthesis were analyzed. The inactivation of these genes resulted in a 3.5- or 7-fold increase in CGP content, respectively, when the cells were grown on glutamate. Knockout mutations in both genes led to a better understanding of the effect of the addition of other substrates to arginine on CGP synthesis during growth of the cells of Acinetobacter sp. strain ADP1. Overexpression of ArgF (ornithine carbamoyltransferase), CarA-CarB (small and large subunits of carbamoylphosphate synthetase), and PepC (phosphoenolpyruvate carboxylase) triggered synthesis of CGP if amino acids were used as a carbon source whereas it was not triggered by gluconate or other sugars. Cells of Acinetobacter sp. strain ADP1, which is largely lacking genes for carbohydrate metabolism, showed a significant increase in CGP contents when grown on mineral medium supplemented with glutamate, aspartate, or arginine. The Acinetobacter sp. DeltaastA(pYargF) strain is unable to utilize arginine but synthesizes more arginine, resulting in CGP contents as high as 30% and 25% of cell dry matter when grown on protamylasse or Luria-Bertani medium, respectively. This recombinant strain overcame the bottleneck of the costly arginine provision where it produces about 75% of the CGP obtained from the parent cells grown on mineral medium containing pure arginine as the sole source of carbon. Phosphate starvation is the only known trigger for CGP synthesis in this bacterium, which possesses the PhoB/PhoR phosphate regulon system. Overexpression of phoB caused an 8.6-fold increase in CGP content in comparison to the parent strain at a nonlimiting phosphate concentration.  相似文献   
28.
Altered expression of multiple miRNAs was found to be extensively involved in the pathogenesis of different neurological disorders including Alzheimer's disease, Parkinson's disease, stroke, epilepsy, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. One of the biggest concerns within gene-based therapy is the delivery of the therapeutic microRNAs to the intended place, which is obligated to surpass the biological barriers without undergoing degradation in the bloodstream or renal excretion. Hence, the delivery of modified and unmodified miRNA molecules using excellent vehicles is required. In this light, mesenchymal stem cells (MSCs) have attracted increasing attention. The MSCs can be genetically modified to express or overexpress a particular microRNA aimed with promote neurogenesis and neuroprotection. The current review has focused on the therapeutic capabilities of microRNAs-overexpressing MSCs to ameliorate functional deficits in neurological conditions.  相似文献   
29.
The large airways are directly in contact with the environment and therefore susceptible to injury from toxins and infectious agents that we breath in 1. The large airways therefore require an efficient repair mechanism to protect our bodies. This repair process occurs from stem cells in the airways and isolating these stem cells from the airways is important for understanding the mechanisms of repair and regeneration. It is also important for understanding abnormal repair that can lead to airway diseases 2. The goal of this method is to isolate a novel stem cell population from the mouse tracheal submucosal gland ducts and to place these cells in in vitro and in vivo model systems to identify the mechanisms of repair and regeneration of the submucosal glands 3. This production shows methods that can be used to isolate and assay the duct and basal stem cells from the large airways 3.This will allow us to study diseases of the airway, such as cystic fibrosis, asthma and chronic obstructive pulmonary disease. Currently, there are no methods for isolation of submucosal gland duct cells and there are no in vivo models to study the regeneration of submucosal glands.  相似文献   
30.

Background:

DNA immunization with plasmid DNA encoding bacterial, viral, parasitic, and tumor antigens has been reported to trigger protective immunity. The use of plasmid DNA vaccinations against many diseases has produced promising results in animal and human clinical trials; however, safety concerns about the use of DNA vaccines exist, such as the possibility of integration into the host genome, and elicitation of adverse immune responses.

Methods:

In this study, we examined the potential integration and bio-distribution of pcDNA3.1+PA, a new vaccine candidate with GenBank accession # EF550208, encoding the PA63 gene, in reproductive organs of mice; ovaries and uterus in female, and testis in male. Animals of both sexes were injected intramuscularly with pcDNA3.1+PA. Host genome integration and tissue distribution were examined using PCR and RT-PCR two times monthly for six months.

Results:

RT-PCR confirmed that pcDNA3.1+PA was not integrated into the host genome and did not enter reproductive organs.

Conclusions:

This finding has important implications for the use of pcDNA3.1+PA plasmid as a vaccine and opens new perspectives in the DNA vaccine area.Key Words: DNA, Intramuscular injection, Integration, Mice, Reproductive organs  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号