首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   433篇
  免费   41篇
  474篇
  2022年   5篇
  2021年   8篇
  2020年   6篇
  2019年   14篇
  2018年   6篇
  2017年   12篇
  2016年   17篇
  2015年   23篇
  2014年   31篇
  2013年   27篇
  2012年   31篇
  2011年   29篇
  2010年   24篇
  2009年   21篇
  2008年   20篇
  2007年   14篇
  2006年   17篇
  2005年   14篇
  2004年   18篇
  2003年   18篇
  2002年   13篇
  2001年   15篇
  2000年   13篇
  1999年   10篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   9篇
  1993年   7篇
  1992年   7篇
  1991年   6篇
  1990年   4篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1912年   2篇
  1909年   1篇
排序方式: 共有474条查询结果,搜索用时 24 毫秒
91.

Background

All viruses in the family Bunyaviridae possess a tripartite genome, consisting of a small, a medium, and a large RNA segment. Bunyaviruses therefore possess considerable evolutionary potential, attributable to both intramolecular changes and to genome segment reassortment. Hantaviruses (family Bunyaviridae, genus Hantavirus) are known to cause human hemorrhagic fever with renal syndrome or hantavirus pulmonary syndrome. The primary reservoir host of Sin Nombre virus is the deer mouse (Peromyscus maniculatus), which is widely distributed in North America. We investigated the prevalence of intramolecular changes and of genomic reassortment among Sin Nombre viruses detected in deer mice in three western states.

Methods

Portions of the Sin Nombre virus small (S) and medium (M) RNA segments were amplified by RT-PCR from kidney, lung, liver and spleen of seropositive peromyscine rodents, principally deer mice, collected in Colorado, New Mexico and Montana from 1995 to 2007. Both a 142 nucleotide (nt) amplicon of the M segment, encoding a portion of the G2 transmembrane glycoprotein, and a 751 nt amplicon of the S segment, encoding part of the nucleocapsid protein, were cloned and sequenced from 19 deer mice and from one brush mouse (P. boylii), S RNA but not M RNA from one deer mouse, and M RNA but not S RNA from another deer mouse.

Results

Two of 20 viruses were found to be reassortants. Within virus sequences from different rodents, the average rate of synonymous substitutions among all pair-wise comparisons (πs) was 0.378 in the M segment and 0.312 in the S segment sequences. The replacement substitution rate (πa) was 7.0 × 10-4 in the M segment and 17.3 × 10-4 in the S segment sequences. The low πa relative to πs suggests strong purifying selection and this was confirmed by a Fu and Li analysis. The absolute rate of molecular evolution of the M segment was 6.76 × 10-3 substitutions/site/year. The absolute age of the M segment tree was estimated to be 37 years. In the S segment the rate of molecular evolution was 1.93 × 10-3 substitutions/site/year and the absolute age of the tree was 106 years. Assuming that mice were infected with a single Sin Nombre virus genotype, phylogenetic analyses revealed that 10% (2/20) of viruses were reassortants, similar to the 14% (6/43) found in a previous report.

Conclusion

Age estimates from both segments suggest that Sin Nombre virus has evolved within the past 37–106 years. The rates of evolutionary changes reported here suggest that Sin Nombre virus M and S segment reassortment occurs frequently in nature.  相似文献   
92.
Some aquatic oligochaete species, mainly certain naidids and tubificids, are often associated with polluted environments, with high levels of organic matter and oxygen deficit. However, in the stations sampled in the Guadaira river basin, which can be arranged on an axis of organic pollution, the main aquatic oligochaete species (Nais elinguis and Tubifex tubifex) inhabiting these environments do not show a distribution pattern significantly related to the water physico-chemical characteristics measured. Nor, have we registered any association between these species and any kind of microhabitat, defined here: water current, presence of different types of vegetation, substrate coarseness and presence of anoxic sediments. Paranais litoralis is the exception, being related to areas without water current, located at higher altitudes, with high levels of dissolved organic matter and an anoxic substrate made up of fine particles. These results can be explained by the highly fluctuating nature of Mediterranean ecosystems and by the marked generalist character and ubiquity of the oligochaete assemblage species, able to colonize any kind of environment.  相似文献   
93.
The new species of cereal × Tritordeum Ascherson et Graebner (Hordeum chilense Roem. et Shultz × Triticum ssp.) has a grain protein concentration (GPC) of up to 25%. The relationship between GPC and yield, and the factors responsible for the high GPC of tritordeum were examined and compared in field experiments. Three experimental tritordeum lines, two early and a later released (recombined and secondary tritordeums) were compared to wheat (cv. Cajeme) and triticale cultivars (cv. Trujillo). GPC's were 19%–22% for recombined tritordeums, 16% for the secondary tritordeum, 12–15% for wheats and 11% for triticale. Grain yields of the recombined and secondary tridordeum were 17–33% and 45–57% that of the wheats and triticale, respectively. Reducing grain sink size by spikelet removal resulted in an increased GPC of remaining grains. Considering all species together there were a strong inverse relationship between GPC and grain yield (GY) per main ear (GPC=26–4.76 ln GY; r2=0.82). In another experiment, frost damage to an early sown treatment of wheat reduced sink size. Harvest index (HI) of early sown wheat was reduced from 0.45 to 0.19, values comparable to that of tritordeum. Having similar HI, the GPC of the early sown wheat was the same as an early sown tritordeum (around 18%). Data for total N uptake and the N concentration of plant tissue during the growing season indicated that enhanced N uptake and remobilisation were not responsible for tritordeum's high GPC. These results suggest that the high GPC of the early lines of tritordeum is a consequence of the small grain yield concentrating the grain protein.  相似文献   
94.
95.
Increased atmospheric CO2 emissions are inducing changes in seawater carbon chemistry, lowering its pH, decreasing carbonate ion availability and reducing calcium carbonate saturation state. This phenomenon, known as ocean acidification, is happening at a faster rate in cold regions, i.e., polar and sub-polar waters. The larval development of Arbacia dufresnei from a sub-Antarctic population was studied at high (8.0), medium (7.7) and low (7.4) pH waters. The results show that the offspring from sub-Antarctic populations of A. dufresnei are susceptible to a development delay at low pH, with no significant increase in abnormal forms. Larvae were isometric between pH treatments. Even at calcium carbonate (CaCO3) saturation states (of both calcite and aragonite, used as proxies of the magnesium calcite) <1, skeleton deposition occurred. Polar and sub-polar sea urchin larvae can show a certain degree of resilience to acidification, also emphasizing A. dufresnei potential to poleward migrate and further colonize southern regions.  相似文献   
96.
The flower opening of damson plum (Prunus insititia L.) was accompanied by an increase in the content of free-polyamines (PA) in the sepals, petals and sex organs, the ovary being most active in accumulating spermine (Spm). The fertilization process and senescence brought on a decline in ovarian Spm, but stimulated putrescine (Put) and spermidine (Spd) content in the sepals. The endocarp of this climacteric fruit produced only ethylene at the end of the S1 phase and throughout S2, in which there was a great richness in ACC and MACC. The greatest amounts of ACC and MACC were observed in the ripening mesocarp and epicarp. The contribution of the endocarp and epicarp to the total ACC in the developing fruit was very similar. During flowering and S1 and S2 phases, Spd was the most abundant PA; in contrast, during S3 and S4 Put was most abundant. The mesocarp contributed the most to the total content in PA throughout the fruit development. The control of SAM distribution towards ethylene and/or PA appears to differ during the development of the endocarp, as the only peak of free-Put (detected in S2) coincided with the highest ACC accumulation and ethylene production. On the contrary, in S3 it is probable that SAM was transformed preferentially into PA, given that free-Spd and Spm, hardly detectable in S1 and S2, peaked in this phase in which there was no gas production.  相似文献   
97.

Background  

Development of the posterior lateral line (PLL) system in zebrafish involves cell migration, proliferation and differentiation of mechanosensory cells. The PLL forms when cranial placodal cells delaminate and become a coherent, migratory primordium that traverses the length of the fish to form this sensory system. As it migrates, the primordium deposits groups of cells called neuromasts, the specialized organs that contain the mechanosensory hair cells. Therefore the primordium provides both a model for studying collective directional cell migration and the differentiation of sensory cells from multipotent progenitor cells.  相似文献   
98.

Background  

Sulphur is an essential macronutrient needed for the synthesis of many cellular components. Sulphur containing amino acids and stress response-related compounds, such as glutathione, are derived from reduction of root-absorbed sulphate. Sulphate distribution in cell compartments necessitates specific transport systems. The low-affinity sulphate transporters SULTR4;1 and SULTR4;2 have been localized to the vacuolar membrane, where they may facilitate sulphate efflux from the vacuole.  相似文献   
99.
Filamentous sulfur bacteria of the genus Thioploca occur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store internally high concentrations of sulfur globules and nitrate. It has been previously hypothesized that these large vacuolated bacteria can oxidize sulfide by reducing their internally stored nitrate. We examined this nitrate reduction by incubation experiments of washed Thioploca sheaths with trichomes in combination with 15N compounds and mass spectrometry and found that these Thioploca samples produce ammonium at a rate of 1 nmol min−1 mg of protein−1. Controls showed no significant activity. Sulfate was shown to be the end product of sulfide oxidation and was observed at a rate of 2 to 3 nmol min−1 mg of protein−1. The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol min−1 mg of protein−1 and could be increased to 10.7 nmol min−1 mg of protein−1 after the trichomes were starved for 45 h. Incorporation of 14CO2 was at a rate of 0.4 to 0.8 nmol min−1 mg of protein−1, which is half the rate calculated from sulfide oxidation. [2-14C]acetate incorporation was 0.4 nmol min−1 mg of protein−1, which is equal to the CO2 fixation rate, and no 14CO2 production was detected. These results suggest that Thioploca species are facultative chemolithoautotrophs capable of mixotrophic growth. Microautoradiography confirmed that Thioploca cells assimilated the majority of the radiocarbon from [2-14C]acetate, with only a minor contribution by epibiontic bacteria present in the samples.  相似文献   
100.
Microbial biomass nitrogen was measured in unamended (dry) and wetted soils in ten shrubland and grassland communities of the Chihuahuan desert, southern New Mexico, by the fumigation-extraction method. Microbial biomass-N in dry soils was undetectable. Average microbial biomass-N in wetted soils among all plant communities was 15.3 μg g-1 soil. Highest values were found in the communities with the lowest topographic positions, and the minimum values were detected in the spaces between shrubs. Microbial biomass was positively and significantly correlated to soil organic carbon and extractable nitrogen (NH4 + + NO3 -). In a stepwise multiple regression, organic carbon and extractable nitrogen accounted for 40.9 and 5.6%, respectively, of the variance in microbial biomass-N among all the samples. Among communities, the soil microbial biomass was affected by the ratio of carbon to extractable nitrogen. Our results suggest a succession in the control of microbial biomass from nitrogen to carbon when the ratio of carbon to nitrogen decreases during desertification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号