首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   402篇
  免费   17篇
  国内免费   1篇
  2023年   3篇
  2022年   8篇
  2021年   23篇
  2020年   7篇
  2019年   9篇
  2018年   10篇
  2017年   9篇
  2016年   27篇
  2015年   18篇
  2014年   34篇
  2013年   27篇
  2012年   31篇
  2011年   29篇
  2010年   19篇
  2009年   16篇
  2008年   19篇
  2007年   22篇
  2006年   26篇
  2005年   16篇
  2004年   19篇
  2003年   17篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1983年   2篇
排序方式: 共有420条查询结果,搜索用时 15 毫秒
411.
412.
413.
414.
415.
The polar hydroethanolic extract from Selaginella sellowii(SSPHE) has been previously proven active on intracellular amastigotes (in vitro test) and now was tested on hamsters infected with Leishmania (Leishmania) amazonensis (in vivo test). SSPHE suppressed a 100% of the parasite load in the infection site and draining lymph nodes at an intralesional dose of 50 mg/kg/day × 5, which was similar to the results observed in hamsters treated with N-methylglucamine antimonate (Sb) (28 mg/Kg/day × 5). When orally administered, SSPHE (50 mg/kg/day × 20) suppressed 99.2% of the parasite load in infected footpads, while Sb suppressed 98.5%. SSPHE also enhanced the release of nitric oxide through the intralesional route in comparison to Sb. The chemical fingerprint of SSPHE by high-performance liquid chromatography with diode-array detection and tandem mass spectrometry showed the presence of biflavonoids and high molecular weight phenylpropanoid glycosides. These compounds may have a synergistic action in vivo. Histopathological study revealed that the intralesional treatment with SSPHE induced an intense inflammatory infiltrate, composed mainly of mononuclear cells. The present findings reinforce the potential of this natural product as a source of future drug candidates for American cutaneous leishmaniasis.  相似文献   
416.
Preclinical research is fundamental for the advancement of biomedical sciences and enhancing healthcare. Considering sex differences in all studies throughout the entire biomedical research pipeline is necessary to adequately inform clinical research and improve health outcomes. However, there is a paucity of information to date on sex differences in preclinical work. As of 2009, most (about 80 percent) rodent studies across 10 fields of biology were still conducted with only male animals. In 2016, the National Institutes of Health implemented a policy aimed to address this concern by requiring the consideration of sex as a biological variable in preclinical research grant applications. This perspective piece aims to (1) provide a brief history of female inclusion in biomedical research, (2) describe the importance of studying sex differences, (3) explain possible reasons for opposition of female inclusion, and (4) present potential additional solutions to reduce sex bias in preclinical research.  相似文献   
417.
Purpose

We have previously identified insulin-like growth factor 2 (IGF2) and insulin-like growth factor 1 receptor (IGF1R) as essential proteins for tip cell maintenance and sprouting angiogenesis. In this study, we aim to identify other IGF family members involved in endothelial sprouting angiogenesis.

Methods

Effects on sprouting were analyzed in human umbilical vein endothelial cells (HUVECs) using the spheroid-based sprouting model, and were quantified as mean number of sprouts per spheroid and average sprout length. RNA silencing technology was used to knockdown gene expression. Recombinant forms of the ligands (IGF1 and IGF2, insulin) and the IGF-binding proteins (IGFBP) 3 and 4 were used to induce excess effects. Effects on the tip cell phenotype were analyzed by measuring the fraction of CD34+ tip cells using flow cytometry and immunohistochemistry in a 3D angiogenesis model. Experiments were performed in the presence and absence of serum.

Results

Knockdown of IGF2 inhibited sprouting in HUVECs, in particular when cultured in the absence of serum, suggesting that components in serum influence the signaling of IGF2 in angiogenesis in vitro. We then determined the effects of IGFBP3 and IGFBP4, which are both present in serum, on IGF2-IGF1R signaling in sprouting angiogenesis in the absence of serum: knockdown of IGFBP3 significantly reduced sprouting angiogenesis, whereas knockdown of IGFBP4 resulted in increased sprouting angiogenesis in both flow cytometry analysis and immunohistochemical analysis of the 3D angiogenesis model. Other IGF family members except INSR did not affect IGF2-IGF1R signaling.

Conclusions

Serum components and IGF binding proteins regulate IGF2 effects on sprouting angiogenesis. Whereas IGFBP3 acts as co-factor for IGF2-IGF1R binding, IGFBP4 inhibits IGF2 signaling.

  相似文献   
418.
Progress in Parkinson’s disease (PD) research and therapeutic development is hindered by many challenges, including a need for robust preclinical animal models. Limited availability of these tools is due to technical hurdles, patent issues, licensing restrictions and the high costs associated with generating and distributing these animal models. Furthermore, the lack of standardization of phenotypic characterization and use of varying methodologies has made it difficult to compare outcome measures across laboratories. In response, The Michael J. Fox Foundation for Parkinson’s Research (MJFF) is directly sponsoring the generation, characterization and distribution of preclinical rodent models, enabling increased access to these crucial tools in order to accelerate PD research. To date, MJFF has initiated and funded the generation of 30 different models, which include transgenic or knockout models of PD-relevant genes such as Park1 (also known as Park4 and SNCA), Park8 (LRRK2), Park7 (DJ-1), Park6 (PINK1), Park2 (Parkin), VPS35, EiF4G1 and GBA. The phenotypic characterization of these animals is performed in a uniform and streamlined manner at independent contract research organizations. Finally, MJFF created a central repository at The Jackson Laboratory (JAX) that houses both non-MJFF and MJFF-generated preclinical animal models. Funding from MJFF, which subsidizes the costs involved in transfer, rederivation and colony expansion, has directly resulted in over 2500 rodents being distributed to the PD community for research use.  相似文献   
419.
420.
The Southern Ocean represents a continuous stretch of circumpolar marine habitat, but the potential physical and ecological drivers of evolutionary genetic differentiation across this vast ecosystem remain unclear. We tested for genetic structure across the full circumpolar range of the white‐chinned petrel (Procellaria aequinoctialis) to unravel the potential drivers of population differentiation and test alternative population differentiation hypotheses. Following range‐wide comprehensive sampling, we applied genomic (genotyping‐by‐sequencing or GBS; 60,709 loci) and standard mitochondrial‐marker approaches (cytochrome b and first domain of control region) to quantify genetic diversity within and among island populations, test for isolation by distance, and quantify the number of genetic clusters using neutral and outlier (non‐neutral) loci. Our results supported the multi‐region hypothesis, with a range of analyses showing clear three‐region genetic population structure, split by ocean basin, within two evolutionary units. The most significant differentiation between these regions confirmed previous work distinguishing New Zealand and nominate subspecies. Although there was little evidence of structure within the island groups of the Indian or Atlantic oceans, a small set of highly‐discriminatory outlier loci could assign petrels to ocean basin and potentially to island group, though the latter needs further verification. Genomic data hold the key to revealing substantial regional genetic structure within wide‐ranging circumpolar species previously assumed to be panmictic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号