首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   2篇
  169篇
  2023年   2篇
  2022年   6篇
  2021年   14篇
  2020年   10篇
  2019年   37篇
  2018年   5篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   12篇
  2013年   9篇
  2012年   9篇
  2011年   9篇
  2010年   6篇
  2009年   5篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2005年   3篇
  2004年   5篇
  2003年   2篇
  1998年   1篇
  1995年   1篇
  1985年   1篇
  1975年   1篇
排序方式: 共有169条查询结果,搜索用时 0 毫秒
161.
Comparative structural studies of ribosomes from various organisms keep offering exciting insights on how species-specific or environment-related structural features of ribosomes may impact translation specificity and its regulation. Although the importance of such features may be less obvious within more closely related organisms, their existence could account for vital yet species-specific mechanisms of translation regulation that would involve stalling, cell survival and antibiotic resistance. Here, we present the first full 70S ribosome structure from Staphylococcus aureus, a Gram-positive pathogenic bacterium, solved by cryo-electron microscopy. Comparative analysis with other known bacterial ribosomes pinpoints several unique features specific to S. aureus around a conserved core, at both the protein and the RNA levels. Our work provides the structural basis for the many studies aiming at understanding translation regulation in S. aureus and for designing drugs against this often multi-resistant pathogen.  相似文献   
162.
Bicarbonate transport (BT) has been previously shown to participate in apoptosis induced by various stress factors. However, the precise role of BT in ischaemia-induced apoptosis is still unknown. To investigate this subject, rat coronary endothelial cells (EC) were exposed to simulated ischaemia (glucose free anoxia at Ph 6.4) for 2 hrs and cells undergoing apoptosis were visualized by nuclear staining or by determination of cas-pase- 3 activity. To inhibit BT, EC were either treated with the inhibitor of BT 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS, 300 mumol/l) or exposed to ischaemia in bicarbonate free, 4-(2-hydroxyethyl)-I-piperazi-neethanesulphonic acid (HEPES)-buffered medium. Simulated ischaemia in bicarbonate-buffered medium (Bic) increased caspase-3 activity and the number of apoptotic cell (23.7 + 1.4%versus 5.1 + 1.2% in control). Omission of bicarbonate during ischaemia further significantly increased caspase-3 activity and the number of apoptotic cells (36.7 1.7%). Similar proapoptotic effect was produced by DIDS treatment during ischaemia in Bic, whereas DIDS had no effect when applied in bicarbonate-free, HEPES-buffered medium (Hep). Inhibition of BT was without influence on cytosolic acidification during ischaemia and slightly reduced cytosolic Ca(2+) accumulation. Initial characterization of the underlying mechanism leading to apoptosis induced by BT inhibition revealed activation of the mitochondrial pathway of apoptosis, i.e., increase of cytochrome C release, depolarization of mitochondria and translocation of Bax protein to mitochondria. In contrast, no activation of death receptor-dependent pathway (caspase-8 cleavage) and endoplasmic reticulum- dependent pathway (caspase-12 cleavage) was detected. In conclusion, BT plays an important role in ischaemia-induced apoptosis of coronary EC by suppression of mitochondria-dependent apoptotic pathway.  相似文献   
163.
Molecular Biology Reports - Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia and abnormal insulin secretion. MicroRNAs are small, non-coding RNAs that are able to affect...  相似文献   
164.
Bioprocess and Biosystems Engineering - The present study describes production and recovery of poly(3-hydroxybutyrate) P(3HB) from agro-industrial residues. Production was conducted using Ralstonia...  相似文献   
165.
Alfalfa (Medicago sativa L.), when exposed to abiotic stress such as salinity, suffers significant losses in yield and productivity. The present study evaluated the salinity tolerance of 12 alfalfa cultivars in vitro using five concentrations of sodium chloride (NaCl), ranging from 0 to 250 mmol L−1 . The results obtained in the current study revealed that the Saudi cultivars, Kasimi and Hassawi, and the German cultivar (Berlin) had the highest salinity tolerance in terms of germination percentage (GP), corrected germination rate index (CGRI), days to reach 50% germination (GT50), and ability to form cotyledonary and true leaves. Under mmol L−1 NaCl, the Saudi cultivar Kasimi cultivar showed GP, CGRI, and GT50 of 55.20%, 123.15, and 3.77 days, respectively. Similarly, the German cultivar (Berlin) showed GP, CGRI, and GT50 of 50.06%, 86.61, and 5.17 days, respectively. These findings might reveal a pivotal aspect in salt tolerance in alfalfa. Our results will help to select salt-tolerant alfalfa cultivars that could thrive in arid and semi-arid areas with salinity problems.  相似文献   
166.
The aggressive and highly metastatic nature of triple-negative breast cancer (TNBC) causes patients to suffer from the poor outcome. HIF-1 signalling pathway is a prominent pathway that contributes to angiogenesis and metastasis progression in tumours. On the contrary, the undeniable importance of circular RNAs (circRNAs) as multifunctional non-coding RNAs (ncRNAs) has been identified in breast cancer. These ncRNAs owing to their high stability and specificity have been becoming a hotspot in cancer researches. circRNAs act as competing endogenous RNAs (ceRNAs) and compete with mRNAs for shared miRNAs, thus modulate gene expression. Since the most dysregulated biological functions in TNBC are associated with cellular invasion, understanding the molecular pathogenesis of these processes is a crucial step towards the development of new treatment approaches. The purpose of this study is to undermine the circRNA-associated ceRNA network involved in HIF-1 signalling in TNBC using an integrative bioinformatics approach. In the next step, the novel circ_0047303-mediated ceRNA regulatory axes have been extracted and validated across TNBC samples. We show that circ_0047303 has the highest degree in the circRNA-associated ceRNA network and shows a significant up-expression in TNBC. Moreover, our results suggest that circ_0047303 could mediate the upregulation of key angiogenesis-related genes, including HIF-1, EIF4E2 and VEGFA in TNBC through sponging the tumour-suppressive miRNAs. The circ_0047303 could be a promising molecular biomarker and/or therapeutic target for TNBC.  相似文献   
167.
168.
169.
A mathematical model is developed for the calculation of the kinetics of water loss from cells at subzero centigrade temperatures. In this model it is assumed that the cell surface membrane is permeable to water only, the protoplasm is a nonideal solution, the cells are spherical, and during the cooling process the cell temperature is not uniform inside the cell. It is also assumed that because of water loss due to cooling process the cell volume and the cell surface area reduce and the reductions in surface area and volume of the cell are functions of the amount of water loss from the cell. Based on this model, and for different conditions, the fractions of supercooled intracellular water remaining in the cells at various temperatures are calculated.It is shown that for cooling cells at subzero centigrade temperatures. (1) the consideration of Clausius-Clapeyron equation for vapor pressures of water and ice, instead of the exact vapor pressure relations, may produce errors in the prediction of the amount of water loss from the cells at high cooling rates only, (2) the assumption of intact cells will produce considerable deviation in the prediction of water loss from the cells as compared to the more realistic assumption of shrinkable cells, (3) the nonideality of protoplasm solution is very effective on the prediction of the amount of water loss from the cells, and (4) the assumption of uniform-temperature cells during the cooling process may be erroneous only for cells with small fractions of water in their protoplasms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号