排序方式: 共有46条查询结果,搜索用时 0 毫秒
31.
32.
33.
Yun Huang Yubin Zhou Hing-Cheung Wong Adriana Castiblanco Yanyi Chen Edward M. Brown Jenny J. Yang 《The Journal of biological chemistry》2010,285(46):35919-35931
The Ca2+-sensing receptor (CaSR) is a member of family C of the GPCRs responsible for sensing extracellular Ca2+ ([Ca2+]o) levels, maintaining extracellular Ca2+ homeostasis, and transducing Ca2+ signaling from the extracellular milieu to the intracellular environment. In the present study, we have demonstrated a Ca2+-dependent, stoichiometric interaction between CaM and a CaM-binding domain (CaMBD) located within the C terminus of CaSR (residues 871–898). Our studies suggest a wrapping around 1–14-like mode of interaction that involves global conformational changes in both lobes of CaM with concomitant formation of a helical structure in the CaMBD. More importantly, the Ca2+-dependent association between CaM and the C terminus of CaSR is critical for maintaining proper responsiveness of intracellular Ca2+ responses to changes in extracellular Ca2+ and regulating cell surface expression of the receptor. 相似文献
34.
海南新村湾海草床主要鱼类及大型无脊椎动物的食源 总被引:1,自引:0,他引:1
利用稳定碳同位素技术,分析了海南岛新村湾海草床中主要鱼类及大型无脊椎动物的食物来源。结果显示,有机碳源δ13C值的变化范围为-16.9‰--6.8‰,以海草叶片及其碎屑最高(-7.8‰ ±0.2‰),悬浮颗粒有机质(POM)最低(-16.9±0.2)‰,而附生藻类(-12.0±0.9)‰和沉积物有机质(SOM)(-13.2±0.2)‰居中。消费者δ13C值的变化范围为-15.4‰--6.4‰,表明其食物来源较广。IsoSource 混合模型计算结果表明,本海草床棘皮动物、多毛类、甲壳类和大部分的鱼类以海草为主要有机碳源,双壳类主要同化附生藻类和SOM的混合有机碳源,少数鱼类以POM为主要碳源。以上结果表明,海草是海草床中主要鱼类及大型无脊椎动物的重要食物来源。 相似文献
35.
36.
Yanyi Wang Jiahua Pu Bolin An Timothy K. Lu Chao Zhong 《Journal of molecular biology》2018,430(20):3720-3734
Many living organisms make use of diverse amyloid proteins as functional building blocks to fulfill a variety of physiological applications. This fact, along with the intrinsic self-assembly and outstanding material properties of amyloids, has prompted a significant amount of research in the synthetic design of functional amyloids to form diverse nanoarchitectures, molecular materials, and hybrid or composite materials. In particular, a new research paradigm has recently been advanced that uses synthetic biology to harness functional amyloids with cells as living materials or functional devices. Here we outline important progress in the synthetic design of functional amyloids, in the context of both non-living and living systems. We propose several important tools and underline emerging techniques and principles that might be useful in advancing the future synthetic design of functional amyloids. 相似文献
37.
38.
Longquan Zuo Yueqin Zhu Lili Hu Yanyi Liu Yinghong Wang Yamin Hu Huan Wang Xuesheng Pan Kuayue Li Na Du Yan Huang 《Journal of cellular and molecular medicine》2019,23(6):3940-3950
Acid‐sensing ion channel 1a (ASIC1a) allows Na+ and Ca2+ flow into cells. It is expressed during inflammation, in tumour and ischaemic tissue, in the central nervous system and non‐neuronal injury environments. Endoplasmic reticulum stress (ERS) is caused by the accumulation of misfolded proteins that interferes with intracellular calcium homoeostasis. Our recent reports showed ASIC1a and ERS are involved in liver fibrosis progression, particularly in hepatic stellate cell (HSC) activation. In this study, we investigated the roles of ASIC1a and ERS in activated HSC. We found that ASIC1a and ERS‐related proteins were up‐regulated in carbon tetrachloride (CCl4)‐induced fibrotic mouse liver tissues, and in patient liver tissues with hepatocellular carcinoma with severe liver fibrosis. The results show silencing ASIC1a reduced the expression of ERS‐related biomarkers GRP78, Caspase12 and IREI‐XBP1. And, ERS inhibition by 4‐PBA down‐regulated the high expression of ASIC1a induced by PDGF, suggesting an interactive relationship. In PDGF‐induced HSCs, ASIC1a was activated and migrated to the cell membrane, leading to extracellular calcium influx and ERS, which was mediated by PI3K/AKT pathway. Our work shows PDGF‐activated ASIC1a via the PI3K/AKT pathway, induced ERS and promoted liver fibrosis progression. 相似文献
39.
40.
Xu Q Kopp RF Chen Y Yang JJ Roe MW Veenstra RD 《American journal of physiology. Cell physiology》2012,302(10):C1548-C1556
Calmodulin (CaM) binding sites were recently identified on the cytoplasmic loop (CL) of at least three α-subfamily connexins (Cx43, Cx44, Cx50), while Cx40 does not have this putative CaM binding domain. The purpose of this study was to examine the functional relevance of the putative Cx43 CaM binding site on the Ca(2+)-dependent regulation of gap junction proteins formed by Cx43 and Cx40. Dual whole cell patch-clamp experiments were performed on stable murine Neuro-2a cells expressing Cx43 or Cx40. Addition of ionomycin to increase external Ca(2+) influx reduced Cx43 gap junction conductance (G(j)) by 95%, while increasing cytosolic Ca(2+) concentration threefold. By contrast, Cx40 G(j) declined by <20%. The Ca(2+)-induced decline in Cx43 G(j) was prevented by pretreatment with calmidazolium or reversed by the addition of 10 mM EGTA to Ca(2+)-free extracellular solution, if Ca(2+) chelation was commenced before complete uncoupling, after which g(j) was only 60% recoverable. The Cx43 CL(136-158) mimetic peptide, but not the scrambled control peptide, or Ca(2+)/CaM-dependent kinase II 290-309 inhibitory peptide also prevented the Ca(2+)/CaM-dependent decline of Cx43 G(j). Cx43 gap junction channel open probability decreased to zero without reductions in the current amplitudes during external Ca(2+)/ionomycin perfusion. We conclude that Cx43 gap junctions are gated closed by a Ca(2+)/CaM-dependent mechanism involving the carboxyl-terminal quarter of the connexin CL domain. This study provides the first evidence of intrinsic differences in the Ca(2+) regulatory properties of Cx43 and Cx40. 相似文献