首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18963篇
  免费   1721篇
  国内免费   1445篇
  2023年   247篇
  2022年   543篇
  2021年   906篇
  2020年   620篇
  2019年   701篇
  2018年   733篇
  2017年   547篇
  2016年   703篇
  2015年   1153篇
  2014年   1278篇
  2013年   1376篇
  2012年   1569篇
  2011年   1505篇
  2010年   985篇
  2009年   836篇
  2008年   911篇
  2007年   882篇
  2006年   770篇
  2005年   659篇
  2004年   621篇
  2003年   547篇
  2002年   518篇
  2001年   393篇
  2000年   392篇
  1999年   362篇
  1998年   170篇
  1997年   166篇
  1996年   159篇
  1995年   120篇
  1994年   146篇
  1993年   90篇
  1992年   155篇
  1991年   147篇
  1990年   122篇
  1989年   99篇
  1988年   82篇
  1987年   96篇
  1986年   84篇
  1985年   94篇
  1984年   48篇
  1983年   48篇
  1982年   48篇
  1981年   36篇
  1980年   37篇
  1979年   52篇
  1978年   41篇
  1977年   45篇
  1976年   33篇
  1975年   35篇
  1974年   44篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
3,3′,4,4′,5-Polychlorinated biphenyl (PCB126) is a persistent organic environmental pollutant which can affect various biological activities of organisms, such as immunity, neurological function, and reproduction. In our study, we aimed to investigate the effects of PCB126 on granulosa cells (GCs). GCs were collected from ovaries in PMSG-treated mice, after 24 hours culture. GCs were then incubated with 10 pg/mL, 100 pg/mL, and 10 ng/mL of PCB126 for another 24 hours. Following these steps, exposed GCs were collected for further experimentation. Our data showed that the number of GCs in the 10 ng/mL PCB126 decreased. Meanwhile, pyknotic nuclei and condensed chromatin increased, while the apoptotic cells in the 10 ng/mL PCB126 group were significantly increased. Furthermore, the expression of the apoptotic executive protein caspase-3 increased after PCB126 treatment. The expression of Bax, Bcl-2, and Bim related to the mitochondrial apoptosis pathway were also influenced to different degrees. Thus, our data suggested that PCB126 affect the GCs apoptosis, and mitochondrial apoptosis pathway was involved in this process.  相似文献   
942.
943.
Colorectal cancer is considered as the fourth leading reason of cancer-linked deaths worldwide. However, our knowledge about its pathogenic mechanism remains inadequate. MicroRNA 32 (miR-32), a member of small noncoding RNAs, has been found vital roles in tumorigenesis. This study studied its functions and underlying mechanism in colorectal cancer. The experiment revealed the obvious upregulation of miR-32 in colorectal cancer tissues and six cancer cell lines, compared with normal tissues and cells. Moreover, miR-32 upregulation reduced cell apoptosis and promoted cell proliferation and migration, while its downregulation displayed opposite effects. Dual luciferase reporter assays proved that miR-32 bound to the 3′-untranslated region (3′-UTR) of OTU domain containing 3 (OTUD3), suggesting that miR-32 directly targeted OTUD3. Further experiments demonstrated that overexpression of miR-32 could reduce the expression level of OTUD3. Furthermore, OTUD3 silence promoted proliferation and motility and decreased apoptosis for HCT116 cells and restored partly miR-32-mediated cell proliferation, migration, and antiapoptosis for colon cancer. Therefore, our study indicated that miR-32 enhanced cell proliferation and motility abilities, and inhibited apoptosis by directly targeting OTUD3 in colon cancer cells, which implied that miR-32 was hopeful to be a biomarker or target used for diagnosis and therapy of colon cancer.  相似文献   
944.
Insulin resistance is associated with impaired glucose uptake and altered protein kinase B (Akt) signaling. Previous studies have suggested asymmetric dimethylarginine (ADMA) and inflammation are two distinguish factors that correlate with insulin resistance (IR). How ADMA and inflammation factors interact and synchronize in the regulation of IR in liver remain to be elucidated. In this study, we systematically investigated whether ADMA is involved in IR using primary hepatocytes, if yes, by via which molecular mechanism. Our results demonstrated that ADMA inhibits insulin sensitivity in a concentration-dependent manner by activating inflammation factors tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-6 in primary hepatocytes. Further analysis revealed that mitogen-activated protein kinase (MAPK) signaling pathway act downstream of ADMA and inflammation factors, and inhibition of MAPK pathway rescued the IR. Furthermore, metformin effects has been found which could reverse ADMA-induced IR by suppressing MAPK signaling pathway. To our knowledge, we, for the first time, unveiled the complicated regulatory network and interactions among ADMA, inflammation, and MAPK signaling pathway, which advanced current research on the development and regulation of IR in liver. This study also certainly provided novel insights on comprehensive diagonistics roles of ADMA as a potential biomarker.  相似文献   
945.
946.
Previous studies have shown that phosphatase and tensin homolog (PTEN) are key regulators of the development of many malignant tumors and other diseases. However, its regulatory effect on coronary heart disease (CHD) has rarely been reported. Therefore, the regulatory effect of PTEN on the survival and cell death of vascular smooth muscle cells (VSMCs) in CHD mice was elucidated in this study. It was found that the protein and messenger RNA expressions of PTEN in VSMCs of 10 CHD mice were lower than those of normal mice. Then PTEN was overexpressed in VSMCs. It was suggested that the upregulation of PTEN was not conducive to the proliferation and survival of VSMCs in the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assay. The flow cytometry (Annexin V-Fluorescein isothiocyanate (FITC)/propidium iodide) and the terminal deoxynucleotidyl transferase dUTP nick end labeling assay were used to detect the apoptotic rate of overexpressing PTEN cells. Some data showed that the expression of PTEN could lead to increased apoptotic rate. It was shown that antiapoptotic Bcl-2 levels were decreased, but cleaved caspase-3 and proapoptotic Bax levels were promoted by SIRT6 overexpression in Western blot analysis. Moreover, PI3K/Akt expression and phosphorylation were significantly decreased in cells expressing PTEN. Recovery of PI3K expression inhibited the suppressive influence of PTEN on VSMC survival, as evidenced by the activated PI3K/Akt pathway, increased cell proliferative rate, reduced the apoptotic level, and reversed expression patterns of Bcl-2 and Bax. Therefore, the findings in this study provide a new idea on the occurrence and development mechanism of CHD and may promote the discovery of innovative therapies.  相似文献   
947.
Proinflammatory cytokine such as interleukin (IL)-1β causes inflammation of articular cartilage. In this current study, we explored the chondroprotective effects of long noncoding RNA (lncRNA) MALAT-1 on cell proliferation, apoptosis, and matrix metabolism in IL-1β-induced inflammation in articular chondrocytes. Articular chondrocytes from knee joints of normal rats were isolated and cultured, followed by identification through observation of toluidine blue and COL II immunocytochemical stainings. The proliferation of chondrocytes at passage 2 was detected by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The inflammatory chondrocytes induced by 10 ng/mL IL-1β were observed and identified by toluidine blue and COL II immunocytochemical stainings. pcDNA 3.1 and pcDNA-MALAT-1 were transfected in the chondrocytes. Ultrastructure of chondrocytes was observed by using a transmission electron microscope. The MTT assay was carried out to evaluate chondrocyte viability. Hoechst 33258 staining and flow cytometry were adopted to assess chondrocyte apoptosis. The chondrocytes at passage 2 with the biological characteristics of chondrocytes were used for subsequent experiments. In IL-1β-treated chondrocytes, the growth rate of chondrocytes slowed down, the cells became narrow and long, the vacuoles were seen in the cells, and the morphology of the chondrocytes was irregular. The toluidine blue staining and the immunohistochemical staining of COL II became weaker. In response to IL-1β induction, articular chondrocytes showed reduced MALAT-1 expression; moreover, obvious cartilage injury was observed with decreased chondrocyte viability and Col II expression and elevated chondrocyte apoptosis, MMP-13 expression, and p-JNK expression. With the treatment of pcDNA-MALAT-1, the cartilage injury was alleviated with increased chondrocyte viability and type II collagen (Col II) expression and reduced chondrocyte apoptosis, MMP-13 expression and p-JNK expression. Taken together these results, lncRNA MALAT-1 blocked the activation of the JNK signaling pathway; thereby, IL-1β-induced inflammation in articular chondrocytes was reduced with enhanced chondrocyte proliferation and suppressed chondrocyte apoptosis and extracellular matrix degradation.  相似文献   
948.
949.
950.
The distal metastasis is the main cause of death in patients with colon cancer. Tyrosine receptor kinase B (TrkB) and ERK signals may be the potential targets for the treatment of colon cancer metastasis. This study aims to investigate whether erlotinib inhibits distant metastasis of colon cancer by regulating TrkB and ERK signaling pathway. Human colon adenocarcinoma cell lines (SW480 and Caco-2) pretreated with exogenous C-X-C motif chemokine ligand 8 (CXCL8) were used to assess the suppressive effect of erlotinib on tumor metastasis, including anoikis, epithelial-mesenchymal transformation (EMT), migration, and invasion. Through TrkB overexpression, Akt suppression, and ERK suppression, the roles of TrkB, Akt, and ERK in erlotinib-induced metastasis inhibition of colon cancer cells were explored. The results showed that erlotinib alleviated CXCL8-induced metastasis of the colon cancer cells. Overexpression of TrkB in colon cancer cells eliminated the effect of erlotinib on anoikis, inhibition of EMT, migration, and invasion, and downregulation of p-ERK and p-Akt. Furthermore, the inhibition of ERK activation instead of Akt activation was found to participate in erlotinib-mediated metastasis resistance, including anoikis, inhibition of EMT, migration, and invasion. In conclusion, erlotinib inhibits colon cancer cell anoikis resistance, EMT, migration, and invasion by inactivating TrkB-dependent ERK signaling pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号