首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10286篇
  免费   917篇
  国内免费   839篇
  12042篇
  2024年   37篇
  2023年   134篇
  2022年   324篇
  2021年   528篇
  2020年   327篇
  2019年   448篇
  2018年   436篇
  2017年   325篇
  2016年   447篇
  2015年   649篇
  2014年   814篇
  2013年   808篇
  2012年   931篇
  2011年   829篇
  2010年   503篇
  2009年   463篇
  2008年   447篇
  2007年   440篇
  2006年   377篇
  2005年   326篇
  2004年   265篇
  2003年   267篇
  2002年   239篇
  2001年   200篇
  2000年   185篇
  1999年   192篇
  1998年   108篇
  1997年   111篇
  1996年   110篇
  1995年   80篇
  1994年   84篇
  1993年   57篇
  1992年   83篇
  1991年   73篇
  1990年   60篇
  1989年   63篇
  1988年   48篇
  1987年   41篇
  1986年   20篇
  1985年   29篇
  1984年   12篇
  1983年   23篇
  1982年   14篇
  1981年   12篇
  1980年   7篇
  1979年   16篇
  1978年   7篇
  1976年   6篇
  1975年   5篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Transport characteristics of essential trace elements as zinc, copper, selenium and iron have been studied in maternal–fetal direction in normal pregnancies, using in vitro perfusion of human placental lobules. Solutions of trace elements corresponding to twice the physiological concentrations were injected (100 l bolus) into the maternal arterial perfusate. Serial perfusate samples were collected every 30 sec from venous outflows for a study period of 5 min. Concentrations of these trace elements and their transport kinetics were determined. Transport fractions (TF) of zinc, copper, selenium and iron averaged 0.21, 0.49, 0.55 and 0.10% of maternal load respectively. Other parameters such as area under the curve, clearance, elimination constant, absorption and elimination rates showed some significant differences between the various elements. Copper and selenium appear to be transported passively in maternal–fetal direction, while for iron and zinc, role of active transport for transfer across the human placental membrane cannot be discounted. We speculate that alterations in copper: zinc TR50 (transport rate for 50% efflux) and TF ratios could serve as useful indicators for assessing placental transport status of these essential elements in complicated pregnancy states.  相似文献   
62.
63.

Background  

Salicylic acid (SA) regulates multiple anti-viral mechanisms, including mechanism(s) that may be negatively regulated by the mitochondrial enzyme, alternative oxidase (AOX), the sole component of the alternative respiratory pathway. However, studies of this mechanism can be confounded by SA-mediated induction of RNA-dependent RNA polymerase 1, a component of the antiviral RNA silencing pathway. We made transgenic Nicotiana benthamiana plants in which alternative respiratory pathway capacity was either increased by constitutive expression of AOX, or decreased by expression of a dominant-negative mutant protein (AOX-E). N. benthamiana was used because it is a natural mutant that does not express a functional RNA-dependent RNA polymerase 1.  相似文献   
64.
Loquat (Eriobotrya japonica Lindl.) can be sorted into red- and white-fleshed cultivars. The flesh of Luoyangqing (LYQ, red-fleshed) appears red-orange because of a high content of carotenoids while the flesh of Baisha (BS, white-fleshed) appears ivory white due to a lack of carotenoid accumulation. The carotenoid content in the peel and flesh of LYQ was approximately 68 μg g(-1) and 13 μg g(-1) fresh weight (FW), respectively, and for BS 19 μg g(-1) and 0.27 μg g(-1) FW. The mRNA levels of 15 carotenogenesis-related genes were analysed during fruit development and ripening. After the breaker stage (S4), the mRNA levels of phytoene synthase 1 (PSY1) and chromoplast-specific lycopene β-cyclase (CYCB) were higher in the peel, and CYCB and β-carotene hydroxylase (BCH) mRNAs were higher in the flesh of LYQ, compared with BS. Plastid morphogenesis during fruit ripening was also studied. The ultrastructure of plastids in the peel of BS changed less than in LYQ during fruit development. Two different chromoplast shapes were observed in the cells of LYQ peel and flesh at the fully ripe stage. Carotenoids were incorporated in the globules in chromoplasts of LYQ and BS peel but were in a crystalline form in the chromoplasts of LYQ flesh. However, no chromoplast structure was found in the cells of fully ripe BS fruit flesh. The mRNA level of plastid lipid-associated protein (PAP) in the peel and flesh of LYQ was over five times higher than in BS peel and flesh. In conclusion, the lower carotenoid content in BS fruit was associated with the lower mRNA levels of PSY1, CYCB, and BCH; however, the failure to develop normal chromoplasts in BS flesh is the most convincing explanation for the lack of carotenoid accumulation. The expression of PAP was well correlated with chromoplast numbers and carotenoid accumulation, suggesting its possible role in chromoplast biogenesis or interconversion of loquat fruit.  相似文献   
65.
The HflX‐family is a widely distributed but poorly characterized family of translation factor‐related guanosine triphosphatases (GTPases) that interact with the large ribosomal subunit. This study describes the crystal structure of HflX from Sulfolobus solfataricus solved to 2.0‐Å resolution in apo‐ and GDP‐bound forms. The enzyme displays a two‐domain architecture with a novel “HflX domain” at the N‐terminus, and a classical G‐domain at the C‐terminus. The HflX domain is composed of a four‐stranded parallel β‐sheet flanked by two α‐helices on either side, and an anti‐parallel coiled coil of two long α‐helices that lead to the G‐domain. The cleft between the two domains accommodates the nucleotide binding site as well as the switch II region, which mediates interactions between the two domains. Conformational changes of the switch regions are therefore anticipated to reposition the HflX‐domain upon GTP‐binding. Slow GTPase activity has been confirmed, with an HflX domain deletion mutant exhibiting a 24‐fold enhanced turnover rate, suggesting a regulatory role for the HflX domain. The conserved positively charged surface patches of the HflX‐domain may mediate interaction with the large ribosomal subunit. The present study provides a structural basis to uncover the functional role of this GTPases family whose function is largely unknown. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
66.
67.
68.
Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17–30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50°C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90–95%.  相似文献   
69.
70.

Background

Respiratory syncytial virus (RSV) is one of the most frequently observed pathogens during infancy and childhood. However, the corresponding pathogenesis has not been determined to date. We previously demonstrated that IFN-γ plays an important role in RSV pathogenesis, and SARM-TRIF-signaling pathway could regulate the production of IFN-γ. This study is to investigate whether T cells or innate immune cells are the predominant producers of IFN-γ, and further to explore other culprits in addition to IFN-γ in the condition of RSV infection.

Methods

Normal BALB/c mice and nude mice deficient in T cells were infected intranasally with RSV. Leukocytes in bronchoalveolar lavage fluid were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. IFN-γ and MMP-12 were detected by ELISA. MMP408, a selective MMP-12 inhibitor, was given intragastrically. Resveratrol, IFN-γ neutralizing antibody and recombinant murine IFN-γ were administered intraperitoneally. SARM and TRIF protein were semi-quantified by Western blot. siRNA was used to knock-down SARM expression.

Results

RSV induced significant airway inflammation and AHR in both mice; IFN-γ was significantly increased in BALB/c mice but not in nude mice. MMP-12 was dramatically increased in both mice but earlier in nude mice. When MMP-12 was inhibited by MMP408, RSV-induced respiratory symptoms were alleviated. SARM was significantly suppressed while TRIF was significantly enhanced in both mice strains. Following resveratrol administration in nude mice, 1) SARM inhibition was prevented, 2) TRIF and MMP-12 were correspondingly down-regulated and 3) airway disorders were subsequently alleviated. Moreover, when SARM was efficiently knocked down using siRNA, TRIF and MMP-12 were markedly enhanced, and the anti-RSV effects of resveratrol were remarkably abrogated. MMP-12 was significantly increased in the IFN-γ neutralizing antibody-treated BALB/c mice but reduced in the recombinant murine IFN-γ-treated nude mice.

Conclusions

MMP-12 can result in at least part of the airway inflammation and AHR independent of IFN-γ. And SARM-TRIF- signaling pathway is involved in regulating the overproduction of MMP-12. To the best of our knowledge, this study is the first that has examined the effects of SARM on MMP-12 and further highlights the potential to target SARM-TRIF-MMP-12 cascades to treat RSV infection.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0176-8) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号