首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2107篇
  免费   174篇
  国内免费   4篇
  2023年   13篇
  2022年   11篇
  2021年   41篇
  2020年   39篇
  2019年   37篇
  2018年   40篇
  2017年   41篇
  2016年   59篇
  2015年   107篇
  2014年   127篇
  2013年   126篇
  2012年   184篇
  2011年   155篇
  2010年   102篇
  2009年   82篇
  2008年   106篇
  2007年   107篇
  2006年   112篇
  2005年   96篇
  2004年   71篇
  2003年   72篇
  2002年   80篇
  2001年   48篇
  2000年   46篇
  1999年   53篇
  1998年   16篇
  1997年   17篇
  1996年   20篇
  1995年   11篇
  1994年   8篇
  1993年   11篇
  1992年   28篇
  1991年   21篇
  1990年   14篇
  1989年   21篇
  1988年   10篇
  1987年   8篇
  1986年   8篇
  1985年   21篇
  1984年   11篇
  1983年   12篇
  1982年   7篇
  1981年   5篇
  1979年   7篇
  1977年   5篇
  1976年   8篇
  1975年   5篇
  1974年   6篇
  1973年   6篇
  1969年   6篇
排序方式: 共有2285条查询结果,搜索用时 15 毫秒
91.
The extended synaptotagmins, E-Syt1, 2 and 3, are multiple C2 domain membrane proteins that are tethered to the endoplasmic reticulum and interact in a calcium dependent manner with plasma membrane phospholipids to form endoplasmic reticulum - plasma membrane junctions. These junctions have been implicated in the exchange of phospholipids between the 2 organelles. The E-Syts have further been implicated in receptor signaling and endocytosis and can interact directly with fibroblast growth factor and other cell surface receptors. Despite these multiple functions, the search for a requirement in vivo has been elusive. Most recently, we found that the genes for E-Syt2 and 3 could be inactivated without effect on mouse development, viability, fertility or morphology. We have now created insertion and deletion mutations in the last of the mouse E-Syt genes. We show that E-Syt1 is specifically expressed throughout the embryonic skeleton during the early stages of chrondrogenesis in a pattern quite distinct from that of E-Syt2 or 3. Despite this, E-Syt1 is also not required for mouse development and propagation. We further show that even the combined inactivation of all 3 E-Syt genes has no effect on mouse viability or fertility in the laboratory. However, this inactivation induces an enhancement in the expression of the genes encoding Orp5/8, Orai1, STIM1 and TMEM110, endoplasmic reticulum - plasma membrane junction proteins that potentially could compensate for E-Syt loss. Given the multiple functions suggested for the E-Syts and their evolutionary conservation, our unexpected findings suggest that they may only provide a survival advantage under specific conditions that have as yet to be identified.  相似文献   
92.
Most cases of medulloblastoma (MB) occur in young children. While the overall survival rate can be relatively high, current treatments combining surgery, chemo‐ and radiotherapy are very destructive for patient development and quality of life. Moreover, aggressive forms and recurrences of MB cannot be controlled by classical therapies. Therefore, new therapeutic approaches yielding good efficacy and low toxicity for healthy tissues are required to improve patient outcome. Cancer cells sustain their proliferation by optimizing their nutrient uptake capacities. The L‐type amino acid transporter 1 (LAT1) is an essential amino acid carrier overexpressed in aggressive human cancers that was described as a potential therapeutic target. In this study, we investigated the therapeutic potential of JPH203, a LAT1‐specific pharmacological inhibitor, on two independent MB cell lines belonging to subgroups 3 (HD‐MB03) and Shh (DAOY). We show that while displaying low toxicity towards normal cerebral cells, JPH203 disrupts AA homeostasis, mTORC1 activity, proliferation and survival in MB cells. Moreover, we demonstrate that a long‐term treatment with JPH203 does not lead to resistance in MB cells. Therefore, this study suggests that targeting LAT1 with JPH203 is a promising therapeutic approach for MB treatment.  相似文献   
93.
Contrary to the generally advanced spring leaf unfolding under global warming, the effects of the climate warming on autumn leaf senescence are highly variable with advanced, delayed, and unchanged patterns being all reported. Using one million records of leaf phenology from four dominant temperate species in Europe, we investigated the temperature sensitivities of spring leaf unfolding and autumn leaf senescence (ST, advanced or delayed days per degree Celsius). The ST of spring phenology in all of the four examined species showed an increase and decrease during 1951–1980 and 1981–2013, respectively. The decrease in the ST during 1981–2013 appears to be caused by reduced accumulation of chilling units. As with spring phenology, the ST of leaf senescence of early successional and exotic species started to decline since 1980. In contrast, for late successional species, the ST of autumn senescence showed an increase for the entire study period from 1951 to 2013. Moreover, the impacts of rising temperature associated with global warming on spring leaf unfolding were stronger than those on autumn leaf senescence. The timing of leaf senescence was positively correlated with the timing of leaf unfolding during 1951–1980. However, as climate warming continued, the differences in the responses between spring and autumn phenology gradually increased, so that the correlation was no more significant during 1981–2013. Our results further suggest that since 2000, due to the decreased temperature sensitivity of leaf unfolding the length of the growing season has not increased any more. These finding needs to be addressed in vegetation models used for assessing the effects of climate change.  相似文献   
94.
95.
96.
97.
Rare species are important targets for biodiversity conservation efforts because rarity often equates to small populations and increased endangerment. Rare species are prone to stochastic extinction events and may be particularly susceptible to catastrophes. Therefore, understanding how rare species respond to disturbances is critical for evaluating extinction risk and guiding conservation managers. Population viability analyses (PVAs) are essential for assessing rare species' status yet they seldom consider catastrophic events. Accordingly, we present a PVA of a rare tropical epiphyte, Lepanthes caritensis (Orchidaceae), under simulated disturbance regimes to evaluate its demographics and extinction risk. We aimed to test how demographic models incorporating catastrophes affect population viability estimates. Our goal was to better guide management of these orchids and other rare plants. Results revealed L. caritensis numbers have declined recently, but projected growth rates indicated that most subpopulations should increase in size if undisturbed. Still, projection models show that moderate catastrophes reduce growth rates, increase stochasticity in subpopulation sizes, and elevate extinction risk. Severe catastrophes had a more pronounced effect in simulations; growth rates fell below replacement level, there was greater variation in projected population sizes, and extinction risk was significantly higher. PVAs incorporating periodic catastrophes indicate that rare species may have greater extinction probabilities than standard models suggest. Thus, precautionary conservation measures should be taken in disturbance prone settings and we encourage careful monitoring after environmental catastrophes. Future rare plant PVAs should incorporate catastrophes and aim to determine if rescue and reintroduction efforts are necessary after disturbances to insure long-term population viability.  相似文献   
98.
Desulfovibrio species are representatives of microorganisms at the boundary between anaerobic and aerobic lifestyles, since they contain the enzymatic systems required for both sulfate and oxygen reduction. However, the latter has been shown to be solely a protective mechanism. By implementing the oxygen-driven experimental evolution of Desulfovibrio vulgaris Hildenborough, we have obtained strains that have evolved to grow with energy derived from oxidative phosphorylation linked to oxygen reduction. We show that a few mutations are sufficient for the emergence of this phenotype and reveal two routes of evolution primarily involving either inactivation or overexpression of the gene encoding heterodisulfide reductase. We propose that the oxygen respiration for energy conservation that sustains the growth of the O2-evolved strains is associated with a rearrangement of metabolite fluxes, especially NAD+/NADH, leading to an optimized O2 reduction. These evolved strains are the first sulfate-reducing bacteria that exhibit a demonstrated oxygen respiratory process that enables growth.  相似文献   
99.
100.
The cytokine Sp?tzle is the ligand for Drosophila Toll, the prototype of an important family of membrane receptors that function in embryonic patterning and innate immunity. A dimeric precursor of Sp?tzle is processed by an endoprotease to produce a form (C-106) that cross-links Toll receptor ectodomains and establishes signaling. Here we show that before processing the pro-domain of Sp?tzle is required for correct biosynthesis and secretion. We mapped two loss-of-function mutations of Sp?tzle to a discrete site in the pro-domain and showed that the phenotype arises because of a defect in biosynthesis rather than signaling. We also report that the pro-domain and C-106 remain associated after cleavage and that this processed complex signals with the same characteristics as the C-terminal fragment. These results suggest that before activation the determinants on C-106 that bind specifically to Toll are sequestered by the pro-domain and that proteolytic processing causes conformational rearrangements that expose these determinants and enables binding to Toll. Furthermore, we show that the pro-domain is released when the Toll extracellular domain binds to the complex, a finding that has implications for the generation of a signaling-competent Toll dimer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号