首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2112篇
  免费   174篇
  国内免费   4篇
  2023年   13篇
  2022年   16篇
  2021年   41篇
  2020年   39篇
  2019年   37篇
  2018年   40篇
  2017年   41篇
  2016年   59篇
  2015年   107篇
  2014年   127篇
  2013年   126篇
  2012年   184篇
  2011年   155篇
  2010年   102篇
  2009年   82篇
  2008年   106篇
  2007年   107篇
  2006年   112篇
  2005年   96篇
  2004年   71篇
  2003年   72篇
  2002年   80篇
  2001年   48篇
  2000年   46篇
  1999年   53篇
  1998年   16篇
  1997年   17篇
  1996年   20篇
  1995年   11篇
  1994年   8篇
  1993年   11篇
  1992年   28篇
  1991年   21篇
  1990年   14篇
  1989年   21篇
  1988年   10篇
  1987年   8篇
  1986年   8篇
  1985年   21篇
  1984年   11篇
  1983年   12篇
  1982年   7篇
  1981年   5篇
  1979年   7篇
  1977年   5篇
  1976年   8篇
  1975年   5篇
  1974年   6篇
  1973年   6篇
  1969年   6篇
排序方式: 共有2290条查询结果,搜索用时 31 毫秒
71.
72.
Jasmonates (JAs) are a class of signaling compounds that mediate complex developmental and adaptative responses in plants. JAs derive from jasmonic acid (JA) through various enzymatic modifications, including conjugation to amino acids or oxidation, yielding an array of derivatives. The main hormonal signal, jasmonoyl-l-isoleucine (JA-Ile), has been found recently to undergo catabolic inactivation by cytochrome P450-mediated oxidation. We characterize here two amidohydrolases, IAR3 and ILL6, that define a second pathway for JA-Ile turnover during the wound response in Arabidopsis leaves. Biochemical and genetic evidence indicates that these two enzymes cleave the JA-Ile signal, but act also on the 12OH-JA-Ile conjugate. We also show that unexpectedly, the abundant accumulation of tuberonic acid (12OH-JA) after wounding originates partly through a sequential pathway involving (i) conjugation of JA to Ile, (ii) oxidation of the JA-Ile conjugate, and (iii) cleavage under the action of the amidohydrolases. The coordinated actions of oxidative and hydrolytic branches in the jasmonate pathway highlight novel mechanisms of JA-Ile hormone turnover and redefine the dynamic metabolic grid of jasmonate conversion in the wound response.  相似文献   
73.
74.
Anaerobic activation of benzene is expected to represent a novel biochemistry of environmental significance. Therefore, benzene metabolism was investigated in Geobacter metallireducens, the only genetically tractable organism known to anaerobically degrade benzene. Trace amounts (<0.5 μM) of phenol accumulated in cultures of Geobacter metallireducens anaerobically oxidizing benzene to carbon dioxide with the reduction of Fe(III). Phenol was not detected in cell-free controls or in Fe(II)- and benzene-containing cultures of Geobacter sulfurreducens, a Geobacter species that cannot metabolize benzene. The phenol produced in G. metallireducens cultures was labeled with 18O during growth in H218O, as expected for anaerobic conversion of benzene to phenol. Analysis of whole-genome gene expression patterns indicated that genes for phenol metabolism were upregulated during growth on benzene but that genes for benzoate or toluene metabolism were not, further suggesting that phenol was an intermediate in benzene metabolism. Deletion of the genes for PpsA or PpcB, subunits of two enzymes specifically required for the metabolism of phenol, removed the capacity for benzene metabolism. These results demonstrate that benzene hydroxylation to phenol is an alternative to carboxylation for anaerobic benzene activation and suggest that this may be an important metabolic route for benzene removal in petroleum-contaminated groundwaters, in which Geobacter species are considered to play an important role in anaerobic benzene degradation.  相似文献   
75.
Warnericin RK is a small cationic peptide produced by Staphylococcus warneri RK. This peptide has an antimicrobial spectrum of activity almost restricted to the Legionella genus. It is a membrane-active peptide with a proposed detergent-like mechanism of action at high concentration. Moreover, the fatty acids content of Legionella was shown to modulate the peptide activity. In order to decipher the mode of action in details using solid-state NMR spectroscopy, large amount of an isotopic labeled peptide is required. Since it is less expensive to obtain such a peptide biologically, we report here methods to express warnericin RK in Escherichia coli with or without a fusion partner and to purify resulting recombinant peptides. The cDNA fragment encoding warnericin RK was synthesized and ligated into three expression vectors. Two fusion peptides, carrying polyhistidine tag in N- or C-terminal and a native peptide, without tag, were expressed in E. coli cells. Fusion peptides were purified, with a yield of 3 mg/l, by affinity chromatography and reverse-phase HPLC. The recombinant native peptide was purified using a two-step purification method consisting of a hydrophobic chromatography followed by a reverse-phase HPLC step with a yield of 1.4 mg/l. However, the anti-Legionella activity was lower for both tagged peptide probably because of structural modifications. So, the native recombinant peptide was preferentially chosen for 15N-labeling experiments. Our results suggest that the developed production and purification procedures will be useful in obtaining a large quantity of recombinant isotope-labeled warnericin RK for further studies.  相似文献   
76.
77.
Increased phenotyping accuracy and throughput are necessary to improve our understanding of quantitative variation and to be able to deconstruct complex traits such as those involved in growth responses to the environment. Still, only a few facilities are known to handle individual plants of small stature for non‐destructive, real‐time phenotype acquisition from plants grown in precisely adjusted and variable experimental conditions. Here, we describe Phenoscope, a high‐throughput phenotyping platform that has the unique feature of continuously rotating 735 individual pots over a table. It automatically adjusts watering and is equipped with a zenithal imaging system to monitor rosette size and expansion rate during the vegetative stage, with automatic image analysis allowing manual correction. When applied to Arabidopsis thaliana, we show that rotating the pots strongly reduced micro‐environmental disparity: heterogeneity in evaporation was cut by a factor of 2.5 and the number of replicates needed to detect a specific mild genotypic effect was reduced by a factor of 3. In addition, by controlling a large proportion of the micro‐environmental variance, other tangible sources of variance become noticeable. Overall, Phenoscope makes it possible to perform large‐scale experiments that would not be possible or reproducible by hand. When applied to a typical quantitative trait loci (QTL) mapping experiment, we show that mapping power is more limited by genetic complexity than phenotyping accuracy. This will help to draw a more general picture as to how genetic diversity shapes phenotypic variation.  相似文献   
78.
Speciation involves the evolution of traits and genetic differences that contribute to reproductive isolation and the cessation of gene flow, and studying closely related species and divergent populations gives insight into how these phenomena proceed. Here, we document patterns of gene flow within and between two members of a rapid Neotropical species radiation, Costus pulverulentus and Costus scaber (Costaceae). These species co‐occur in the tropical rainforest and share pollinators, but are reproductively isolated by a series of prezygotic barriers, some of which show evidence of reinforcement at sympatric sites. Here, we genotype microsatellite markers in plants from eight sites that span the geographical range of both species, including four sympatric sites. We also genotype putative hybrids found at two sympatric sites. We find high levels of genetic isolation among populations within each species and low but detectable levels of introgression between species at sympatric sites. Putative hybrids identified by morphology are consistent with F1 or more advanced hybrids. Our results highlight the effectiveness of prezygotic isolating mechanisms at maintaining species boundaries in young radiations and provide empirical data on levels of gene flow consistent with reinforcement.  相似文献   
79.
Drug resistance is a major public health challenge in leishmaniasis chemotherapy, particularly in the case of emerging Leishmania/HIV‐1 co‐infections. We have delineated the mechanism of cell death induced by the HIV‐1 protease inhibitor, Nelfinavir, in the Leishmania parasite. In order to further study Nelfinavir–Leishmania interactions, we selected Nelfinavir‐resistant axenic amastigotes in vitro and characterized them. RNA expression profiling analyses and comparative genomic hybridizations of closely related Leishmania species were used as a screening tool to compare Nelfinavir‐resistant and ‐sensitive parasites in order to identify candidate genes involved in drug resistance. Microarray analyses of Nelfinavir‐resistant and ‐sensitive Leishmania amastigotes suggest that parasites regulate mRNA levels either by modulating gene copy numbers through chromosome aneuploidy, or gene deletion/duplication by homologous recombination. Interestingly, supernumerary chromosomes 6 and 11 in the resistant parasites lead to upregulation of the ABC class of transporters. Transporter assays using radiolabelled Nelfinavir suggest a greater drug accumulation in the resistant parasites and in a time‐dependent manner. Furthermore, high‐resolution electron microscopy and measurements of intracellular polyphosphate levels showed an increased number of cytoplasmic vesicular compartments known as acidocalcisomes in Nelfinavir‐resistant parasites. Together these results suggest that Nelfinavir is rapidly and dramatically sequestered in drug‐induced intracellular vesicles.  相似文献   
80.
Highlights? DCC and netrin-1 are enriched at synapses in the adult mouse forebrain ? DCC is enriched in the PSD and regulates dendritic spine morphology ? LTP induction and memory formation require DCC expression by neurons ? DCC activation of Src is required for NMDAR-dependent LTP in adult CNS  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号