首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1080篇
  免费   88篇
  国内免费   3篇
  2023年   11篇
  2022年   13篇
  2021年   30篇
  2020年   35篇
  2019年   26篇
  2018年   32篇
  2017年   31篇
  2016年   39篇
  2015年   71篇
  2014年   73篇
  2013年   77篇
  2012年   120篇
  2011年   107篇
  2010年   54篇
  2009年   50篇
  2008年   65篇
  2007年   59篇
  2006年   56篇
  2005年   49篇
  2004年   34篇
  2003年   31篇
  2002年   34篇
  2001年   7篇
  2000年   4篇
  1999年   5篇
  1998年   7篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1970年   2篇
  1968年   1篇
  1965年   1篇
  1964年   2篇
排序方式: 共有1171条查询结果,搜索用时 15 毫秒
101.
Single-celled apicomplexan parasites are known to cause major diseases in humans and animals including malaria, toxoplasmosis, and coccidiosis. The presence of apicoplasts with the remnant of a plastid-like DNA argues that these parasites evolved from photosynthetic ancestors possibly related to the dinoflagellates. Toxoplasma gondii displays amylopectin-like polymers within the cytoplasm of the dormant brain cysts. Here we report a detailed structural and comparative analysis of the Toxoplasma gondii, green alga Chlamydomonas reinhardtii, and dinoflagellate Crypthecodinium cohnii storage polysaccharides. We show Toxoplasma gondii amylopectin to be similar to the semicrystalline floridean starch accumulated by red algae. Unlike green plants or algae, the nuclear DNA sequences as well as biochemical and phylogenetic analysis argue that the Toxoplasma gondii amylopectin pathway has evolved from a totally different UDP-glucose-based metabolism similar to that of the floridean starch accumulating red alga Cyanidioschyzon merolae and, to a lesser extent, to those of glycogen storing animals or fungi. In both red algae and apicomplexan parasites, isoamylase and glucan–water dikinase sequences are proposed to explain the appearance of semicrystalline starch-like polymers. Our results have built a case for the separate evolution of semicrystalline storage polysaccharides upon acquisition of photosynthesis in eukaryotes.This article contains online-only supplementary material.Reviewing Editor:Dr. Patrick Keeling  相似文献   
102.
103.
Flash photolysis has become an essential technique for dynamic investigations of living cells and tissues. This approach offers several advantages for instantly changing the concentration of bioactive compounds outside and inside living cells with high spatial resolution. Light sources for photolysis need to deliver pulses of high intensity light in the near UV range (300-380 nm), to photoactivate a sufficient amount of molecules in a short time. UV lasers are often required as the light source, making flash photolysis a costly approach. Here we describe the use of a high power 365 nm light emitting diode (UV LED) coupled to an optical fiber to precisely deliver the light to the sample. The ability of the UV LED light source to photoactivate several caged compounds (CMNB-fluorescein, MNI-glutamate, NP-EGTA, DMNPE-ATP) as well as to evoke the associated cellular Ca(2+) responses is demonstrated in both neurons and astrocytes. This report shows that UV LEDs are an efficient light source for flash photolysis and represent an alternative to UV lasers for many applications. A compact, powerful, and low-cost system is described in detail.  相似文献   
104.
Mechanism of force generation of a viral DNA packaging motor   总被引:6,自引:0,他引:6  
A large family of multimeric ATPases are involved in such diverse tasks as cell division, chromosome segregation, DNA recombination, strand separation, conjugation, and viral genome packaging. One such system is the Bacillus subtilis phage phi 29 DNA packaging motor, which generates large forces to compact its genome into a small protein capsid. Here we use optical tweezers to study, at the single-molecule level, the mechanism of force generation in this motor. We determine the kinetic parameters of the packaging motor and their dependence on external load to show that DNA translocation does not occur during ATP binding but is likely triggered by phosphate release. We also show that the motor subunits act in a coordinated, successive fashion with high processivity. Finally, we propose a minimal mechanochemical cycle of this DNA-translocating ATPase that rationalizes all of our findings.  相似文献   
105.
In sexually reproducing species, fertilization brings together in the zygote the genomes of the female and male gametes. In several animal species, female gametes are able to initiate embryogenesis in the absence of fertilization, a process referred to as parthenogenesis. Parthenogenesis has been engineered in mice by tampering with expression of loci under epigenetic controls [1]. In plants, embryo development in the absence of fertilization has been reported in cases in which meiosis is bypassed leading to apomictic development, and parthenogenetic development from a reduced egg cell has been only reported in rare accidental cases [2]. We report that single mutations in the gene MULTICOPY SUPPRESSOR OF IRA 1 (MSI1) are able to initiate parthenogenetic development of the embryo in Arabidopsis thaliana from eggs cells produced by meiosis. The WD40 repeat protein MSI1 is part of the evolutionarily conserved Polycomb group (PcG) chromatin-remodeling complexes [3] and is homologous to the Retinoblastoma binding proteins P55 in Drosophila and RbAp48 in mammals [4]. Nonviable haploid parthenogenetic msi1 embryos express molecular markers and polarity similar to diploid wild-type (wt) embryos produced by fertilization, indicating a maternal contribution to early patterning of the Arabidopsis embryo.  相似文献   
106.
In this review, we describe recent results concerning the genetics of sex determination in mammals. Particularly, we developed the study of the FOXL2 gene and its implication in genetic anomalies in goats (PIS mutation) and humans (BPES). We present the expression of FOXL2 in the ovaries of different species.  相似文献   
107.
Notch1 is essential for postnatal hair follicle development and homeostasis   总被引:4,自引:0,他引:4  
Notch genes encode evolutionarily conserved large, single transmembrane receptors, which regulate many cell fate decisions and differentiation processes during fetal and postnatal life. Multiple Notch receptors and ligands are expressed in both developing and adult epidermis and hair follicles. Proliferation and differentiation of these two ectodermal-derived structures have been proposed to be controlled in part by the Notch pathway. Whether Notch signaling is involved in postnatal hair homeostasis is currently unknown. Here, we investigate and compare the role of the Notch1 receptor during embryonic hair follicle development and postnatal hair homeostasis using Cre-loxP based tissue specific and inducible loss-of-function approaches. During embryonic development, tissue-specific ablation of Notch1 does not perturb formation and patterning of hair follicle placodes. However, Notch1 deficient hair follicles invaginate prematurely into the dermis. Embryonic as well as postnatal inactivation of Notch1 shortly after birth or in adult mice results in almost complete hair loss followed by cyst formation. The first hair cycle of Notch1 deficient mice is characterized by shortened anagen and a premature entry into catagen. These data show that Notch1 is essential for late stages of hair follicle development during embryogenesis as well as for post-natal hair follicle development and hair homeostasis.  相似文献   
108.
We have previously demonstrated that human recombinant soluble melanotransferrin (hr-sMTf) interacts with the single-chain zymogen pro urokinase-type plasminogen activator (scu-PA) and plasminogen. In the present work, the impact of exogenous hr-sMTf on endothelial cells (EC) migration and morphogenic differentiation into capillary-like structures (tubulogenesis) was assessed. hr-sMTF at 10 nM inhibited by 50% the migration and tubulogenesis of human microvessel EC (HMEC-1). In addition, in hr-sMTf-treated HMEC-1, the expression of both urokinase-type plasminogen activator receptor (u-PAR) and low-density lipoprotein receptor-related protein (LRP) are down-regulated. However, fluorescence-activated cell sorting analysis revealed a 25% increase in cell surface u-PAR in hr-sMTf-treated HMEC-1, whereas the binding of the urokinase-type plasminogen activator (u-PA)*plasminogen activator inhibitor-1 (PAI-1) complex is decreased. This reduced u-PA-PAI-1 binding is correlated with a strong inhibition of the HMEC-1 plasminolytic activity, indicating that exogenous hr-sMTf treatment alters the internalization and recycling processes of free and active u-PAR at the cellular surface. Overall, these results demonstrate that exogenous hr-sMTf affects plasminogen activation at the cell surface, thus leading to the inhibition of EC movement and tubulogenesis. These results are the first to consider the potential use of hr-sMTf as a possible therapeutic agent in angiogenesis-related pathologies.  相似文献   
109.
Chasmagnathus granulata phosphoenolpyruvate carboxykinase (PEPCK) cDNA from jaw muscle was cloned and sequenced, showing a specific domain to bind phosphoenolpyruvate in addition to the kinase-1 and kinase-2 motifs to bind guanosine triphosphate (GTP) and Mg(2+), respectively, specific for all PEPCKs. In the kinase-1 motifs the GK was changed to RK. The first 19 amino acids of the putative enzyme contain hydrophobic amino acids and hydroxylated residues specific to a mitochondrial type signal. The PEPCK is expressed in hepatopancreas, muscles, nervous system, heart, and gills. Hyperosmotic stress for 24 h increased the PEPCK mRNA level, gluconeogenic and PEPCK activities in muscle.  相似文献   
110.
Glyconectins (GNs) represent a new class of proteoglycan-like cell adhesion and recognition molecules found in several Porifera species. Physico-chemical properties of GN carbohydrate moieties, such as size, composition, and resistance to most glycosaminoglycan-degrading enzymes, distinguish them from any other type of known glycoproteins. The molecular mechanism of GN-mediated self/non-self discrimination function is based on highly species-specific and Ca(2+)-dependent GN to GN associations that approach the selectivity of the evolutionarily advanced immunoglobulin superfamily. Carbohydrates of glyconectins 1, 2, and 3 are essential for species-specific auto-aggregation properties in three respective Porifera species. To obtain a structural insight into the molecular mechanisms, we performed carbohydrate structural analyses of glyconectins isolated from the three sponge model systems, Microciona prolifera (GN1), Halichondria panicea (GN2), and Cliona celata (GN3). The glycan content of all three GNs ranged between 40 and 60% of their total mass. Our approach using sequential and selective chemical degradation of GN glycans and subsequent mass spectrometric and NMR analyses revealed that each glyconectin presents novel and highly species-specific carbohydrate sequences. All three GNs include distinct acid-resistant and acid-labile carbohydrate domains, the latter composed of novel repetitive units. We have sequenced four short sulfated and one pyruvilated unit in GN1, eight larger and branched pyruvilated oligosaccharides in GN2, which represent a heterogeneous but related family of structures, and four sulfated units in GN3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号