首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10300篇
  免费   726篇
  国内免费   917篇
  11943篇
  2024年   28篇
  2023年   154篇
  2022年   399篇
  2021年   685篇
  2020年   393篇
  2019年   502篇
  2018年   492篇
  2017年   339篇
  2016年   483篇
  2015年   734篇
  2014年   846篇
  2013年   837篇
  2012年   993篇
  2011年   897篇
  2010年   519篇
  2009年   469篇
  2008年   520篇
  2007年   442篇
  2006年   341篇
  2005年   274篇
  2004年   246篇
  2003年   246篇
  2002年   206篇
  2001年   147篇
  2000年   113篇
  1999年   130篇
  1998年   72篇
  1997年   70篇
  1996年   63篇
  1995年   53篇
  1994年   36篇
  1993年   25篇
  1992年   41篇
  1991年   22篇
  1990年   21篇
  1989年   37篇
  1988年   14篇
  1987年   8篇
  1986年   9篇
  1985年   21篇
  1984年   5篇
  1983年   7篇
  1982年   2篇
  1981年   2篇
排序方式: 共有10000条查询结果,搜索用时 8 毫秒
71.
72.
Zhang  Wen  Sun  Yuzhe  Liu  Jia  Xu  Chao  Zou  Xinhui  Chen  Xun  Liu  Yanlei  Wu  Ping  Yang  Xueying  Zhou  Shiliang 《Plant molecular biology》2021,105(3):215-228
Key message

We applied the phylogenomics to clarify the concept of rice species, aid in the identification and use of rice germplasms, and support rice biodiversity.

Abstract

Rice (genus Oryza) is one of the most important crops in the world, supporting half of the world’s population. Breeding of high-yielding and quality cultivars relies on genetic resources from both cultivated and wild species, which are collected and maintained in seed banks. Unfortunately, numerous seeds are mislabeled due to taxonomic issues or misidentifications. Here, we applied the phylogenomics of 58 complete chloroplast genomes and two hypervariable nuclear genes to determine species identity in rice seeds. Twenty-one Oryza species were identified. Conspecific relationships were determined between O. glaberrima and O. barthii, O. glumipatula and O. longistaminata, O. grandiglumis and O. alta, O. meyeriana and O. granulata, O. minuta and O. malampuzhaensis, O. nivara and O. sativa subsp. indica, and O. sativa subsp. japonica and O. rufipogon. D and L genome types were not found and the H genome type was extinct. Importantly, we evaluated the performance of four conventional plant DNA barcodes (matK, rbcL, psbA-trnH, and ITS), six rice-specific chloroplast DNA barcodes (psaJ-rpl33, trnC-rpoB, rps16-trnQ, rpl22-rps19, trnK-matK, and ndhC-trnV), two rice-specific nuclear DNA barcodes (NP78 and R22), and a chloroplast genome super DNA barcode. The latter was the most reliable marker. The six rice-specific chloroplast barcodes revealed that 17% of the 53 seed accessions from rice seed banks or field collections were mislabeled. These results are expected to clarify the concept of rice species, aid in the identification and use of rice germplasms, and support rice biodiversity.

  相似文献   
73.
74.
Liu  Chaowu  Yang  Deguang  Wang  Hong  Hu  Shengwei  Xie  Xiaofei  Zhang  Li  Jia  Hongling  Qi  Qi 《Molecular and cellular biochemistry》2021,476(12):4245-4263

Kawasaki disease (KD) causes cardiovascular system injury in children. However, the pathogenic mechanisms of KD have not been well defined. Recently, strong correlation between aberrant microRNAs and KD nosogenesis has been revealed. A role of microRNA-197-3p (miR-197-3p) in the pathogenesis of KD is identified in the present study. Cell proliferation assay showed human coronary artery endothelial cells (HCAECs) were suppressed by serum from KD patients, which was correlated with high levels of miR-197-3p in both KD serum and HCAECs cultured with KD serum. The inhibition of HCAECs by miR-197-3p was confirmed by cells expressing miR-197-3p mimic and miR-197-3p inhibitor. Comparative proteomics analysis and Ingenuity Pathway Analysis (IPA) revealed TIMP3 as a potential target of miR-197-3p, which was demonstrated by western blot and dual-luciferase reporter assays. Subsequently, by detecting the endothelium damage markers THBS1, VWF, and HSPG2, the role of miR-197-3p/TIMP3 in KD-induced damage to HCAECs was confirmed, which was further validated by a KD mouse model in vivo. The expressions of miR-197-3p and its target, TIMP3, are dramatically variational in KD serum and HCAECs cultured with KD serum. Increased miR-197-3p induces HCAECs abnormal by restraining TIMP3 expression directly. Hence, dysregulation of miR-197-3p/TIMP3 expression in HCAECs may be an important mechanism in cardiovascular endothelium injury in KD patients, which offers a feasible therapeutic target for KD treatment.

  相似文献   
75.
76.
Li  Dongyang  Liu  Xiaoyu  Li  Tong  Wang  Xiaoran  Jia  Shuwei  Wang  Ping  Wang  Yu-Feng 《Neurochemical research》2021,46(4):980-991
Neurochemical Research - Oxytocin (OT) neuronal activity is the key factor for breastfeeding and it can be disrupted by mother-baby separation. To explore cellular mechanisms underlying OT neuronal...  相似文献   
77.
Ma  Guangzhen  Chen  Jirong  Wei  Tiantian  Wang  Jia  Chen  Wenshan 《Cytotechnology》2021,73(4):523-537
Cytotechnology - Forkhead box A2 (FOXA2) has emerged as a tumor inhibitor in several human malignancies. This work focused on the effect of FOXA2 on liver cancer (LC) cell invasion and migration...  相似文献   
78.
The weevil Pagiophloeus tsushimanus Morimoto (Coleoptera: Curculionidae), native to Eastern Asia, is a wood-boring pest that causes severe damage to camphor trees (Cinnamomum sp.) in Shanghai, China. Other Lauraceae tree species that grew sympatrically with this pest in close proximity could face a potential threat. To assess the potential risks of host shift, we explored the phenotypic associations between preference and performance in P. tsushimanus reared on three Lauraceae tree species. In a no-choice experiment offering branches of each plant as diet material and oviposition sites, we found that individuals reared on Cinnamomum camphora (L.) Presl (Laurales: Lauraceae) exhibited the strongest performance with shorter development time, higher survival and growth rate in the immature stage, longer longevity and greater fecundity in adults. In contrast, those on novel Lauraceae tree species (Cinnamomum chekiangensis Nakai and Phoebe chekiangensis Shang) had difficulty completing their whole life cycle due to significantly lower survival and reproduction. In a multiple-choice experiment, C. camphora was established as the preferred host. However, we found that the larval experiences on the non-preferred host plants contributed to an increased preference for that plant species. These results indicated that both the preference-performance hypothesis and the Hopkins’ host selection principle are applicable in this weevil under experimental conditions. It is possible that although the weevil performed poorly on two novel Lauraceae tree species, under favourable conditions their surviving offspring could evolve into a new host-specific population. Consequently, this weevil pest needs to be monitored on these novel Lauraceae tree species.  相似文献   
79.
Bread wheat (Triticum aestivum) is an allohexaploid that was formed via two allopolyploidization events. Growing evidence suggests histone modifications are involved in the response to ‘genomic shock’ and environmental adaptation during polyploid formation and evolution. However, the role of histone modifications, especially histone H3 lysine-27 dimethylation (H3K27me2), in genome evolution remains elusive. Here we analyzed H3K27me2 and H3K27me3 profiles in hexaploid wheat and its tetraploid and diploid relatives. Although H3K27me3 levels were relatively stable among wheat species with different ploidy levels, H3K27me2 intensities increased concurrent with increased ploidy levels, and H3K27me2 peaks were colocalized with massively amplified DTC transposons (CACTA family) in euchromatin, which may silence euchromatic transposons to maintain genome stability during polyploid wheat evolution. Consistently, the distribution of H3K27me2 is mutually exclusive with another repressive histone mark, H3K9me2, that mainly silences transposons in heterochromatic regions. Remarkably, the regions with low H3K27me2 levels (named H3K27me2 valleys) were associated with the formation of DNA double-strand breaks in genomes of wheat, maize (Zea mays) and Arabidopsis. Our results provide a comprehensive view of H3K27me2 and H3K27me3 distributions during wheat evolution, which support roles for H3K27me2 in silencing euchromatic transposons to maintain genome stability and in modifying genetic recombination landscapes. These genomic insights may empower breeding improvement of crops.  相似文献   
80.
Sun  Hong-Jing  Zhang  Fang-Fang  Xiao  Qing  Xu  Jia  Zhu  Li-Jin 《Biochemical genetics》2021,59(6):1680-1680
Biochemical Genetics - A correction to this paper has been published: https://doi.org/10.1007/s10528-021-10086-3  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号