首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5502篇
  免费   480篇
  国内免费   447篇
  6429篇
  2024年   12篇
  2023年   84篇
  2022年   193篇
  2021年   323篇
  2020年   214篇
  2019年   239篇
  2018年   265篇
  2017年   175篇
  2016年   207篇
  2015年   363篇
  2014年   357篇
  2013年   459篇
  2012年   516篇
  2011年   470篇
  2010年   251篇
  2009年   250篇
  2008年   281篇
  2007年   246篇
  2006年   189篇
  2005年   184篇
  2004年   137篇
  2003年   137篇
  2002年   107篇
  2001年   121篇
  2000年   85篇
  1999年   106篇
  1998年   60篇
  1997年   47篇
  1996年   37篇
  1995年   42篇
  1994年   35篇
  1993年   25篇
  1992年   40篇
  1991年   25篇
  1990年   24篇
  1989年   25篇
  1988年   19篇
  1987年   15篇
  1986年   19篇
  1985年   20篇
  1984年   7篇
  1983年   8篇
  1982年   7篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有6429条查询结果,搜索用时 10 毫秒
231.
Primary CNS lymphoma carries a poor prognosis. Novel therapeutic agents are urgently needed. Pomalidomide (POM) is a novel immunomodulatory drug with anti-lymphoma activity. CNS pharmacokinetic analysis was performed in rats to assess the CNS penetration of POM. Preclinical evaluation of POM was performed in two murine models to assess its therapeutic activity against CNS lymphoma. The impact of POM on the CNS lymphoma immune microenvironment was evaluated by immunohistochemistry and immunofluorescence. In vitro cell culture experiments were carried out to further investigate the impact of POM on the biology of macrophages. POM crosses the blood brain barrier with CNS penetration of ~ 39%. Preclinical evaluations showed that it had significant therapeutic activity against CNS lymphoma with significant reduction in tumor growth rate and prolongation of survival, that it had a major impact on the tumor microenvironment with an increase in macrophages and natural killer cells, and that it decreased M2-polarized tumor-associated macrophages and increased M1-polarized macrophages when macrophages were evaluated based on polarization status. In vitro studies using various macrophage models showed that POM converted the polarization status of IL4-stimulated macrophages from M2 to M1, that M2 to M1 conversion by POM in the polarization status of lymphoma-associated macrophages is dependent on the presence of NK cells, that POM induced M2 to M1 conversion in the polarization of macrophages by inactivating STAT6 signaling and activating STAT1 signaling, and that POM functionally increased the phagocytic activity of macrophages. Based on our findings, POM is a promising therapeutic agent for CNS lymphoma with excellent CNS penetration, significant preclinical therapeutic activity, and a major impact on the tumor microenvironment. It can induce significant biological changes in tumor-associated macrophages, which likely play a major role in its therapeutic activity against CNS lymphoma. POM should be further evaluated in clinical trials.  相似文献   
232.
It is well known that Notch signaling plays either oncogenic or tumor suppressive role in a variety of tumors, depending on the cellular context. However, in our previous study, we found that Notch1 was overexpressed while Notch2 downregulated in the majority of astrocytic gliomas with different grades as well as in glioblastoma cell lines U251 and A172. We had knocked down Notch1 by siRNA in glioblastoma cells, and identified that the cell growth and invasion were inhibited, whereas cell apoptosis was induced either in vitro or in vivo. For further clarification of the role of Notch2 in pathogenesis of gliomas, enforced overexpression of Notch2 was carried out with transfection of Notch2 expression plasmid in glioma cells and the cell growth, invasion and apoptosis were examined in vitro and in vivo in the present study, and siRNA targeting Notch1 was used as a positive control in vivo. The results showed that upregulating Notch2 had the effect of suppressing cell growth and invasion as well as inducing apoptosis, just the same as the results of knocking down Notch1. Meanwhile, the activity of core signaling pathway–EGFR/PI3K/AKT in astrocytic glioma cells was repressed. Thus, the present study reveals, for the first time, that Notch1 and Notch2 play different roles in the biological processes of astrocytic gliomas. Knocking down the Notch1 or enforced overexpression of Notch2 both modulate the astrocytic glioma phenotype, and the mechanism by which Notch1 and 2 play different roles in the glioma growth should be further investigated.  相似文献   
233.
234.
235.
Caspase activation and proteolytic cleavages are the major events in the early stage of apoptosis. Identification of protein substrates cleaved by caspases will reveal the occurrence of the early events in the apoptotic process and may provide potential drug targets for cancer therapy. Although several N‐terminal MS‐based proteomic approaches have been developed to identify proteolytic cleavages, these methods have their inherent drawbacks. Here we apply a previously developed proteomic approach, protein C‐terminal enzymatic labeling (ProC‐TEL), to identify caspase cleavage events occurring in the early stage of the apoptosis of a myeloma cell line induced by kinase inhibition. Both previously identified and novel caspase cleavage sites are detected and the reduction of the expression level of several proteins is confirmed biochemically upon kinase inhibition although the current ProC‐TEL procedure is not fully optimized to provide peptide identifications comparable to N‐terminal labeling approaches. The identified cleaved proteins form a complex interaction network with central hubs determining morphological changes during the apoptosis. Sequence analyses show that some ProC‐TEL identified caspase cleavage events are unidentifiable when traditional N‐terminomic approaches are utilized. This work demonstrates that ProC‐TEL is a complementary approach to the N‐terminomics for the identification of proteolytic cleavage events such as caspase cleavages in signaling pathways.  相似文献   
236.
Thymus is crucial for generation of a diverse repertoire of T cells essential for adaptive immunity. Although thymic epithelial cells (TECs) are crucial for thymopoiesis and T cell generation, how TEC development and function are controlled is poorly understood. We report here that mTOR complex 1 (mTORC1) in TECs plays critical roles in thymopoiesis and thymus function. Acute deletion of mTORC1 in adult mice caused severe thymic involution. TEC-specific deficiency of mTORC1 (mTORC1KO) impaired TEC maturation and function such as decreased expression of thymotropic chemokines, decreased medullary TEC to cortical TEC ratios, and altered thymic architecture, leading to severe thymic atrophy, reduced recruitment of early thymic progenitors, and impaired development of virtually all T-cell lineages. Strikingly, temporal control of IL-17-producing γδT (γδT17) cell differentiation and TCRVγ/δ recombination in fetal thymus is lost in mTORC1KO thymus, leading to elevated γδT17 differentiation and rearranging of fetal specific TCRVγ/δ in adulthood. Thus, mTORC1 is central for TEC development/function and establishment of thymic environment for proper T cell development, and modulating mTORC1 activity can be a strategy for preventing thymic involution/atrophy.  相似文献   
237.
Piwi-interacting RNAs (piRNAs) play a key role in spermatogenesis. Here, we describe the piRNAs profiling of primordial germ cells (PGCs), spermatogonial stem cells (SSCs), and the spermatogonium (Sp) during early-stage spermatogenesis in chicken. We obtained 31,361,989 reads from PGCs, 31,757,666 reads from SSCs, and 46,448,327 reads from Sp cells. The length distribution of piRNAs in the three samples showed peaks at 33 nt. The resulting genes were subsequently annotated against the Gene Ontology (GO) database. Five genes (RPL7A, HSPA8, Pum1, CPXM2, and PRKCA) were found to be involved in cellular processes. Interactive pathway analysis (IPA) further revealed three important pathways in early-stage spermatogenesis including the FGF, Wnt, and EGF receptor signaling pathways. The gene Pum1 was found to promote germline stem cell proliferation, but it also plays a role in spermatogenesis. In conclusion, we revealed characteristics of piRNAs during early spermatogonial development in chicken and provided the basis for future research.  相似文献   
238.
CRISPR-Cas systems, the small RNA-dependent immune systems, are widely distributed in prokaryotes. However, only a small proportion of CRISPR-Cas systems have been identified to be active in bacteria. In this work, a naturally active type I-E CRISPR-Cas system was found in Streptomyces avermitilis. The system shares many common genetic features with the type I-E system of Escherichia coli, and meanwhile shows unique characteristics. It not only degrades plasmid DNA with target protospacers, but also acquires new spacers from the target plasmid DNA. The naive features of spacer acquisition in the type I-E system of S. avermitilis were investigated and a completely conserved PAM 5’-AAG-3’ was identified. Spacer acquisition displayed differential strand bias upstream and downstream of the priming spacer, and irregular integrations of new spacers were observed. In addition, introduction of this system into host conferred phage resistance to some extent. This study will give new insights into adaptation mechanism of the type I-E systems in vivo, and meanwhile provide theoretical foundation for applying this system on the genetic modification of S. avermitilis.  相似文献   
239.
Proteus mirabilis is a common urinary tract pathogen, and may induce various inflammation symptoms. Its notorious ability to resist multiple antibiotics and to form urinary tract stones makes its treatment a long and painful process, which is further challenged by the frequent horizontal gene transferring events in P. mirabilis genomes. Three strains of P. mirabilis C02011/C04010/C04013 were isolated from a local outbreak of a food poisoning event in Shenzhen, China. Our hypothesis is that new genes may have been acquired horizontally to exert the digestion tract infection and toxicity. The functional characterization of these three genomes shows that each of them independently acquired dozens of virulent genes horizontally from the other microbial genomes. The representative strain C02011 induces the symptoms of both vomit and diarrhea, and has recently acquired a complete type IV secretion system and digestion tract toxic genes from the other bacteria.  相似文献   
240.

Background

Beta (β)-human chorionic gonadotropin (β-HCG) is used to confirm the diagnosis and plan treatment of intracranial germinomas. However, the cutoff values of serum β-HCG in diagnosis of intracranial germinomas reported in the literature are inconsistent. To establish an appropriate cutoff value of serum β-HCG for diagnosis of intracranial germinomas, we retrospectively reviewed the records of intracranial tumor patients who received serum β-HCG and α-fetoprotein (AFP) tests for diagnostic purposes at our hospital from 2005 to 2014.

Methods

A total of 93 intracranial germinomas and 289 intracranial non-germ cell tumors were included in this study. Receiver operating characteristic (ROC) analysis was used to evaluate the sensitivity and specificity of 3 cutoffs (0.1, 0.4, and 0.5 mIU/mL) for diagnosing intracranial germinomas. The serum β-HCG level of intracranial germinoma patients was further analyzed to investigate the effect of metastasis status and tumor location on serum β-HCG level.

Results

The area under the ROC curve was 0.81 (P < .001), suggesting β-HCG is an effective marker. Of the 3 cutoff values, 0.1 mIU/mL possessed a highest sensitivity (66.67%) and good specificity (91%). Although there was no β-HCG level difference between metastatic and non-metastatic intracranial germinoma patients, the diagnostic rate of metastatic neurohypophyseal germinomas was significantly higher than that of its non-metastatic counterpart (P < .05), implying that the location of the germinoma might need to be considered when β-HCG is used as a marker to predict metastasis.

Conclusions

Determining an optimal cutoff of serum β-HCG is helpful for assisting the diagnosis of intracranial germinoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号