首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2796篇
  免费   243篇
  国内免费   9篇
  3048篇
  2022年   26篇
  2021年   40篇
  2020年   23篇
  2019年   31篇
  2018年   42篇
  2017年   22篇
  2016年   51篇
  2015年   120篇
  2014年   124篇
  2013年   144篇
  2012年   194篇
  2011年   197篇
  2010年   109篇
  2009年   98篇
  2008年   141篇
  2007年   134篇
  2006年   155篇
  2005年   149篇
  2004年   141篇
  2003年   109篇
  2002年   80篇
  2001年   83篇
  2000年   82篇
  1999年   67篇
  1998年   32篇
  1997年   28篇
  1996年   22篇
  1995年   23篇
  1994年   22篇
  1993年   18篇
  1992年   58篇
  1991年   36篇
  1990年   38篇
  1989年   43篇
  1988年   29篇
  1987年   29篇
  1986年   31篇
  1985年   35篇
  1984年   20篇
  1983年   30篇
  1982年   13篇
  1981年   13篇
  1979年   21篇
  1978年   10篇
  1977年   18篇
  1976年   12篇
  1975年   11篇
  1974年   10篇
  1972年   21篇
  1971年   16篇
排序方式: 共有3048条查询结果,搜索用时 0 毫秒
81.
Although a β-turn consists of only four amino acids, it assumes many different types in proteins. Is this basically dependent on the tetrapeptide sequence alone or is it due to a variety of interactions with the other part of a protein? To answer this question, a residue-coupled model is proposed that can reflect the sequence-coupling effect for a tetrapeptide in not only a β-turn or non-β-turn, but also different types of a β-turn. The predicted results by the model for 6022 tetrapeptides indicate that the rates of correct prediction for β-turn types I, I′, II, II′, VI, and VIII and non-β-turns are 68.54%, 93.60%, 85.19%, 97.75%, 100%, 88.75%, and 61.02%, respectively. Each of these seven rates is significantly higher than $\frac{1}{7}$ = 14.29%, the completely randomized rate, implying that the formation of different β-turn types or non-β-turns is considerably correlated with the sequences of a tetrapeptide.  相似文献   
82.
Summary The HPV oncoproteins E6 and E7 are consistently expressed in HPV-associated cancer cells and are responsible for their malignant transformation. Therefore, HPV E6 and E7 are ideal target antigens for developing vaccines and immunotherapeutic strategies against HPV-associated neoplasms. Recently, it has been demonstrated that codon optimization of the HPV-16 E7 gene resulted in highly efficient translation of E7 and increased the immunogenicity of E7-specific DNA vaccines. Since vaccines targeting E6 also represent an important strategy for controlling HPV-associated lesions, we developed a codon-optimized HPV-16 E6 DNA vaccine (pNGVL4a-E6/opt) and characterized the E6-specific CD8+ T cell immune responses as well as the protective and therapeutic anti-tumor effects in vaccinated C57BL/6 mice. Our data indicated that transfection of human embryonic kidney cells (293 cells) with pNGVL4a-E6/opt resulted in highly efficient translation of E6. In addition, vaccination with pNGVL4a-E6/opt significantly enhanced E6-specific CD8+ T cell immune responses in C57BL/6 mice. Mice vaccinated with pNGVL4a-E6/opt are able to generate potent protective and therapeutic antitumor effects against challenge with E6-expressing tumor cell line, TC-1. Thus, DNA vaccines encoding a codon-optimized HPV-16 E6 may be a promising strategy for improving the potency of prophylactic and therapeutic HPV vaccines with potential clinical implications.  相似文献   
83.
The goal of the study is to investigate the preventive effect of taurine against arsenite-induced arrest of neuronal differentiation in N2a cells. Our results revealed that taurine reinstated the neurite outgrowth in arsenite-treated N2a cells. Meanwhile, arsenite-induced oxidative stress and mitochondrial dysfunction as well as degradation of mitochondria DNA (mtDNA) were also inhibited by co-treatment of taurine. Since oxidative stress and mitochondrial dysfunction is closely associated with endoplasmic reticulum (ER) stress, we further examined indicators of ER stress, 78 kDa glucose-regulated protein (GRP78), and C/EBP-homologous protein (CHOP) protein expression. The results demonstrated that taurine significantly reduced arsenite-induced ER stress in N2a cells. In the parallel experiment, arsenite-induced disruption of intracellular calcium homeostasis was also ameliorated by taurine. The proven bio-function of taurine preserved a preventive effect against deleteriously cross-talking between oxidative stress, mitochondria, and ER. Overall, the results of the study suggested that taurine reinstated neuronal differentiation by inhibiting oxidative stress, ER stress, and mitochondrial dysfunction in arsenite-treated N2a cells.  相似文献   
84.
A novel thin film ethanol sensor using sputtered Ni/Pt/Ti on an Al2O3 substrate as the working electrode in an alkaline solution was developed. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to characterize the nanostructure of nickel films. Sputtering deposition conditions for maximum catalytic efficiency, electrode selectivity, and reproducibility were discussed. The results showed that ethanol oxidation was more efficient on the sputtered Ni/Pt/Ti on an Al2O3 substrate electrode than that on the conventional nickel electrode. The optimal operating conditions to generate the sputtered Ni/Pt/Ti on the Al2O3 substrate electrode were: 45 min of Ni sputtering deposition time, and 50 W of Ni sputtering power. The results also indicated that the response time of the prepared ethanol sensor is 27 s and the best sensitivity is 3.08 microA microM(-1) cm(-2).  相似文献   
85.
兴安薄荷(Mentha dahurica Fisch.ex Benth.)为唇形科薄荷属(Mentha L.)多年生草本植物,产于我国黑龙江、吉林、内蒙古东北部。俄罗斯远东地区以及日本北方也有分布。在我国东北有作中药薄荷入药的。其化学成分研究甚少,仅俄国Pulatova报道其含有香豆素类成分。为开发利用我国薄荷植物资源,作者对全国薄荷属植物进行了野外调查,并对其资源、生物学性状、孢粉学和化学等进行了较系统的研究,现仅就兴安薄荷挥发油中化学成分分析结果作一报道。  相似文献   
86.
As an energy carrier, hydrogen gas is a promising substitute to carbonaceous fuels owing to its superb conversion efficiency, non-polluting nature, and high energy content. At present, hydrogen is predominately synthesized via chemical reformation of fossil fuels. While various biological methods have been extensively explored, none of them is justified as economically feasible. A sustainable platform for biological production of hydrogen will certainly impact the biofuel market. Among a selection of biological systems, algae and cyanobacteria have garnered major interests as potential cell factories for hydrogen production. In conjunction with photosynthesis, these organisms utilize inexpensive inorganic substrates and solar energy for simultaneous biosynthesis and hydrogen evolution. However, the hydrogen yield associated with these organisms remains far too low to compete with the existing chemical systems. This article reviews recent advances of biochemical, bioprocess, and genetic engineering strategies in circumventing technological limitations to hopefully improve the applicative potential of these photosynthetic hydrogen production systems.  相似文献   
87.
88.
Abdou L  Chou HT  Haas D  Lu CD 《Journal of bacteriology》2011,193(11):2784-2792
In Pseudomonas aeruginosa, the CbrA/CbrB two-component system is instrumental in the maintenance of the carbon-nitrogen balance and for growth on carbon sources that are energetically less favorable than the preferred dicarboxylate substrates. The CbrA/CbrB system drives the expression of the small RNA CrcZ, which antagonizes the repressing effects of the catabolite repression control protein Crc, an RNA-binding protein. Dicarboxylates appear to cause carbon catabolite repression by inhibiting the activity of the CbrA/CbrB system, resulting in reduced crcZ expression. Here we have identified a conserved palindromic nucleotide sequence that is present in upstream activating sequences (UASs) of promoters under positive control by CbrB and σ(54) RNA polymerase, especially in the UAS of the crcZ promoter. Evidence for recognition of this palindromic sequence by CbrB was obtained in vivo from mutational analysis of the crcZ promoter and in vitro from electrophoretic mobility shift assays using crcZ promoter fragments and purified CbrB protein truncated at the N terminus. Integration host factor (IHF) was required for crcZ expression. CbrB also activated the lipA (lipase) promoter, albeit less effectively, apparently by interacting with a similar but less conserved palindromic sequence in the UAS of lipA. As expected, succinate caused CbrB-dependent catabolite repression of the lipA promoter. Based on these results and previously published data, a consensus CbrB recognition sequence is proposed. This sequence has similarity to the consensus NtrC recognition sequence, which is relevant for nitrogen control.  相似文献   
89.
Glycogen storage disease type 1a is caused by a deficiency in glucose-6-phosphatase (G6Pase), a nine-helical endoplasmic reticulum transmembrane protein required for maintenance of glucose homeostasis. To date, 75 G6Pase mutations have been identified, including 48 mutations resulting in single-amino acid substitutions. However, only 19 missense mutations have been functionally characterized. Here, we report the results of structure and function studies of the 48 missense mutations and the DeltaF327 codon deletion mutation, grouped as active site, helical, and nonhelical mutations. The 5 active site mutations and 22 of the 31 helical mutations completely abolished G6Pase activity, but only 5 of the 13 nonhelical mutants were devoid of activity. Whereas the active site and nonhelical mutants supported the synthesis of G6Pase protein in a manner similar to that of the wild-type enzyme, immunoblot analysis showed that the majority (64.5%) of helical mutations destabilized G6Pase. Furthermore, we show that degradation of both wild-type and mutant G6Pase is inhibited by lactacystin, a potent proteasome inhibitor. Taken together, we have generated a data base of residual G6Pase activity retained by G6Pase mutants, established the critical roles of transmembrane helices in the stability and activity of this phosphatase, and shown that G6Pase is a substrate for proteasome-mediated degradation.  相似文献   
90.
The as-quenched (AQ) microstructure of the Ag-containing alloys was found to be essentially a mixture of austenite (γ) and Ag phases. The Ag phase precipitates had a face-centered-cubic structure and lattice parameter a = 4.09 Å. When the alloy contained Ag ≥0.2 wt%, the mechanical properties were slightly enhanced because of the precipitate strengthening by the Ag phase precipitates. Moreover, the Ag-containing alloys exhibited ductile fracture after tensile testing. The results of an antibacterial test revealed that the Ag phase precipitates play a key role in the antibacterial mechanism of Ag-containing alloys: Ag+ ions released from the Ag phase precipitates can kill bacteria. It is suggested that as AISI 316L alloy has an Ag content ≥0.2 wt%, it will have excellent antibacterial properties against both Staphylococcus aureus and Escherichia coli, with an antibacterial rate of nearly 100%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号