首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57901篇
  免费   4602篇
  国内免费   4515篇
  67018篇
  2024年   142篇
  2023年   790篇
  2022年   1852篇
  2021年   3046篇
  2020年   2085篇
  2019年   2501篇
  2018年   2345篇
  2017年   1807篇
  2016年   2545篇
  2015年   3631篇
  2014年   4389篇
  2013年   4438篇
  2012年   5301篇
  2011年   4767篇
  2010年   2885篇
  2009年   2602篇
  2008年   2938篇
  2007年   2637篇
  2006年   2262篇
  2005年   1891篇
  2004年   1510篇
  2003年   1420篇
  2002年   1074篇
  2001年   911篇
  2000年   890篇
  1999年   810篇
  1998年   499篇
  1997年   454篇
  1996年   477篇
  1995年   423篇
  1994年   413篇
  1993年   325篇
  1992年   447篇
  1991年   324篇
  1990年   284篇
  1989年   260篇
  1988年   210篇
  1987年   194篇
  1986年   176篇
  1985年   154篇
  1984年   115篇
  1983年   122篇
  1982年   81篇
  1981年   45篇
  1980年   51篇
  1979年   63篇
  1976年   46篇
  1974年   54篇
  1973年   45篇
  1972年   53篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Periodic first-principles calculations have been performed to study the effect of high pressure on the geometric, electronic, and absorption properties of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) under hydrostatic pressures of 0–50 GPa. Obvious irregular changes in lattice constants, unit-cell angles, bond lengths, bond angles, and band gaps showed that crystalline LLM-105 undergoes four structural transformations at 8, 17, 25, and 42 GPa, respectively. The intramolecular H-bonds were strong at pressures of 0–41 GPa but weakened in the range 42–50 GPa. The lengths of the intermolecular H-bonds (<1.47 Å) indicated that these H-bonds have covalent character and tend to induce the formation of a new twelve-membered ring. Analysis of the DOS showed that the interactions between electrons, especially the valence electrons, strengthen under the influence of pressure. The p states play a very important role in chemical reactions of LLM-105. The absorption spectrum of LLM-105 displayed more bands—as well as stronger bands—in the fundamental absorption region when the pressure was high rather than low. A new absorption peak due to O–H stretching appeared at 18.3 eV above 40 GPa, indicating that covalent O–H bonds and a new twelve-membered ring are present in LLM-105.  相似文献   
972.
Halogen bonding, a non-covalent interaction between the halogen σ-hole and Lewis bases, could not be properly characterized by majority of current scoring functions. In this study, a knowledge-based halogen bonding scoring function, termed XBPMF, was developed by an iterative method for predicting protein-ligand interactions. Three sets of pairwise potentials were derived from two training sets of protein-ligand complexes from the Protein Data Bank. It was found that two-dimensional pairwise potentials could characterize appropriately the distance and angle profiles of halogen bonding, which is superior to one-dimensional pairwise potentials. With comparison to six widely used scoring functions, XBPMF was evaluated to have moderate power for predicting protein-ligand interactions in terms of “docking power”, “ranking power” and “scoring power”. Especially, it has a rather satisfactory performance for the systems with typical halogen bonds. To the best of our knowledge, XBPMF is the first halogen bonding scoring function that is not dependent on any dummy atom, and is practical for high-throughput virtual screening. Therefore, this scoring function should be useful for the study and application of halogen bonding interactions like molecular docking and lead optimization.
Figure
Heat map of 2D XB potentials for OA-Cl  相似文献   
973.
Designing selective protein kinase B (PKB/Akt) inhibitor is an area of intense research to develop potential anticancer drugs. In the present study, the molecular basis governing PKB-selective inhibition has been investigated using molecular dynamics simulation. The binding free energies calculated by MM/PBSA gave a good correlation with the experimental biological activity and a good explanation of the activity difference of the studied inhibitors. The decomposition of free energies by MM/GBSA indicates that the ethyl group on pyrrolo[2,3-d]pyrimidine ring of inhibitor Lig1 (N-{[(3S)-3-amino-1-(5-ethyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)pyrrolidin-3-yl]-methyl}-2,4-difluoro-benzamide) is an important contributor to its PKBα selectivity due to its hydrophobic interaction with the side chain of Thr291 in PKBα. The substituted groups on the pyrrolidine ring of Lig1 also show a strong tendency to mediate protein-ligand interactions through the hydrogen bonds formed between the amino or amide groups of Lig1 and the carboxyl O atoms of Glu234, Glu278, and Asp292 of PKBα. It was reported that there are only three key amino acid differences between PKBα (Thr211, Ala230, Met281) and PKA (Val104, Val123, Leu173) within the clefts of ATP-binding sites. These differences propel a drastic conformational change in PKA, weakening its binding interactions with inhibitor. The impact was also confirmed by MD simulated interaction modes of inhibitor binding to PKBα mutants with the in silico mutations of the three key amino acids, respectively. We expect that the results obtained here could be useful for future rational design of specific ATP-competitive inhibitors of PKBα.  相似文献   
974.
975.
Layered sodium titanium oxide, Na2Ti3O7, is synthesized by a solid‐state reaction method as a potential anode for sodium‐ion batteries. Through optimization of the electrolyte and binder, the microsized Na2Ti3O7 electrode delivers a reversible capacity of 188 mA h g?1 in 1 M NaFSI/PC electrolyte at a current rate of 0.1C in a voltage range of 0.0–3.0 V, with sodium alginate as binder. The average Na storage voltage plateau is found at ca. 0.3 V vs. Na+/Na, in good agreement with a first‐principles prediction of 0.35 V. The Na storage properties in Na2Ti3O7 are investigated from thermodynamic and kinetic aspects. By reducing particle size, the nanosized Na2Ti3O7 exhibits much higher capacity, but still with unsatisfied cyclic properties. The solid‐state interphase layer on Na2Ti3O7 electrode is analyzed. A zero‐current overpotential related to thermodynamic factors is observed for both nano‐ and microsized Na2Ti3O7. The electronic structure, Na+ ion transport and conductivity are investigated by the combination of first‐principles calculation and electrochemical characterizations. On the basis of the vacancy‐hopping mechanism, a quasi‐3D energy favorable trajectory is proposed for Na2Ti3O7. The Na+ ions diffuse between the TiO6 octahedron layers with pretty low activation energy of 0.186 eV.  相似文献   
976.
Organic redox compounds are emerging electrode materials for rechargeable lithium batteries. However, their electrically insulating nature plagues efficient charge transport within the electroactive bulk. Alternative to the popular solution of elaborating nanocomposite materials, herein we report on a molecular‐level engineering strategy towards high‐power organic electrode materials with multi‐electron reactions. Systematic comparisons of anthraquinone analogues incorporating fused heteroaromatic structures as cathode materials in rechargeable lithium batteries reveal that the judicious incorporation of heteroaromatics improves the cell performance in terms of specific gravimetric capacity, working potential, rate capability, and cyclability. Combination studies with morphological observation, electrochemical impedance characterization, and theoretical modeling provide insight into the advantage of heteroaromatic building blocks. In particular, benzofuro[5,6‐b]furan‐4,8‐dione ( BFFD ) bearing furan moeities shows a reversible capacity of 181 mAh g?1 when charged/discharged at 100C, corresponding to a power density of 29.8 kW kg?1. These results have pointed to a general design route of high‐rate organic electrode materials by rational functionalization of redox compounds with appropriate heteroaromatic units as versatile structural tools.  相似文献   
977.
In the present study, we established a genetic system for manipulating the oleaginous heterotrophic microalgae Aurantiochytrium sp. KRS101, using cycloheximide resistance as the selectable marker. The gene encoding ribosomal protein L44 (RPL44) of Aurantiochytrium sp. KRS101 was first identified and characterized. Proline 56 was replaced with glutamine, affording cycloheximide resistance to strains encoding the mutant protein. This resistance served as a novel selection marker. The gene encoding the Δ12-fatty acid desaturase of Mortierella alpina, used as a reporter, was successfully introduced into chromosomal DNA of Aurantiochytrium sp. KRS101 via 18S rDNA-targeted homologous recombination. Enzymatic conversion of oleic acid (C18:1) to linoleic acid (C18:2) was detected in transformants but not in the wild-type strain.  相似文献   
978.
Rotavirus (RV) infection is the main cause of acute dehydrating diarrhea in infants and young children below 5 years old worldwide. RV infection causes a global shutoff of host proteins as many other viruses do. However, previous studies revealed that RV could selectively upregulated the expression of some host proteins that then played important roles in RV infection. To globally explor such host proteins that were upregulated in early human rotavirus (HRV) infection, proteomic methods were used and a total of ten upregulated host proteins were unambiguously identified. Cyclophilin A (CYPA), a peptidyl‐prolyl cis‐trans isomerase, was among these upregulated host proteins. Following infection, CYPA was recruited to the viroplasm and interacted with HRV structural protein VP2; CYPA reduced host susceptibility to HRV infection and inhibited replication of HRV by repressing the expression of viral proteins. Furthermore, we found that the increased expression of CYPA in enterocytes of small intestine correlated to the period when BALB/c mice became resistant to RV diarrhea. Together, we identified CYPA as a novel host restriction factor that confered protection against RV infection and might contribute to host susceptibility to RV diarrhea.  相似文献   
979.
Congjiao Sun  Guiyun Xu  Ning Yang 《Proteomics》2013,13(23-24):3523-3536
Eggshell strength is a crucial economic trait for table egg production. During the process of eggshell formation, uncalcified eggs are bathed in uterine fluid that plays regulatory roles in eggshell calcification. In this study, a label‐free MS‐based protein quantification technology was used to detect differences in protein abundance between eggshell matrix from strong and weak eggs (shell matrix protein from strong eggshells and shell matrix protein from weak eggshells) and between the corresponding uterine fluids bathing strong and weak eggs (uterine fluid bathing strong eggs and uterine fluid bathing weak eggs) in a chicken population. Here, we reported the first global proteomic analysis of uterine fluid. A total of 577 and 466 proteins were identified in uterine fluid and eggshell matrix, respectively. Of 447 identified proteins in uterine fluid bathing strong eggs, up to 357 (80%) proteins were in common with proteins in uterine fluid bathing weak eggs. Similarly, up to 83% (328/396) of the proteins in shell matrix protein from strong eggshells were in common with the proteins in shell matrix protein from weak eggshells. The large amount of common proteins indicated that the difference in protein abundance should play essential roles in influencing eggshell strength. Ultimately, 15 proteins mainly relating to eggshell matrix specific proteins, calcium binding and transportation, protein folding and sorting, bone development or diseases, and thyroid hormone activity were considered to have closer association with the formation of strong eggshell.  相似文献   
980.
[首页] « 上一页 [93] [94] [95] [96] [97] 98 [99] [100] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号