首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125409篇
  免费   10430篇
  国内免费   8594篇
  2024年   178篇
  2023年   1305篇
  2022年   3040篇
  2021年   5791篇
  2020年   3905篇
  2019年   4737篇
  2018年   4687篇
  2017年   3460篇
  2016年   4864篇
  2015年   7429篇
  2014年   8728篇
  2013年   9435篇
  2012年   11171篇
  2011年   10246篇
  2010年   6209篇
  2009年   5539篇
  2008年   6596篇
  2007年   5873篇
  2006年   5093篇
  2005年   4333篇
  2004年   3614篇
  2003年   3266篇
  2002年   2689篇
  2001年   2380篇
  2000年   2389篇
  1999年   2196篇
  1998年   1301篇
  1997年   1212篇
  1996年   1243篇
  1995年   1116篇
  1994年   1048篇
  1993年   827篇
  1992年   1224篇
  1991年   960篇
  1990年   859篇
  1989年   783篇
  1988年   617篇
  1987年   547篇
  1986年   494篇
  1985年   441篇
  1984年   331篇
  1983年   310篇
  1982年   189篇
  1981年   161篇
  1980年   134篇
  1979年   208篇
  1977年   129篇
  1976年   125篇
  1975年   137篇
  1974年   169篇
排序方式: 共有10000条查询结果,搜索用时 890 毫秒
151.
152.
This study investigated the protective effects of two polysaccharides (CPA-1 and CPB-2) from Cordyceps cicadae against high fructose/high fat diet (HF/HFD) induced obesity and metabolic disorders in rats. Rats were either fed with normal diet or HF/HFD and treated with CPA-1 and CPB-2 (100 and 300 mg/kg) for 11 weeks. Administration of CPA-1 and CPB-2 significantly and dose dependently reduced body and liver weight, insulin and glucose tolerance, serum insulin and glucose levels. Furthermore, serum and hepatic lipid profiles, liver function enzymes and proinflammatory cytokines (TNF-α, IL-1β and IL-6) were markedly reduced. Additionally, CPA-1 and CPB-2 treatment alleviated hepatic oxidative stress by reducing lipid peroxidation level (MDA) and upregulating glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) activities as well as ameliorated histological alterations through the reduction of hepatic lipid accumulation. These results suggested that the polysaccharides from C. cicadae showed protective effects against HF/HFD induced metabolic disturbances and may be considered as a dietary supplement for treating obesity.  相似文献   
153.
154.
Pallister-Killian syndrome (PKS) is a rare sporadic genetic disorder usually caused by mosaicism of an extra isochromosome of 12p (i(12p)). This retrospective study analysed the prenatal ultrasound manifestations and molecular and cytogenetic results of five PKS foetuses. Samples of amniotic fluid and/or cord blood, skin biopsy and placenta were collected. Conventional karyotyping and single nucleotide polymorphism array (SNP array) were performed on all the amniotic fluid or cord blood samples. Copy number variants sequencing (CNV-seq) and fluorescence in situ hybridization (FISH) were also used for the validation for one foetus. All the five foetuses were from pregnancies with advanced parental age. Two foetuses involved structural abnormalities and one foetus had only soft markers, all of which included increased nuchal translucency. The rest two foetuses had normal ultrasounds in the second trimester, which has rarely been reported before. The karyotype revealed typical i(12p) in four cases and a small supernumerary marker chromosome consisting of 12p and 20p in the remaining one case. The proportion of cells with i(12p) ranged from 0 to 100% in cultural cells, while SNP array results suggested 2−4 copies of 12p. For one foetus, metaphase FISH showed normal results, but the interphase FISH suggested cell lines with two, three and four copies of 12p in the amniotic fluid. Advanced parental age may be an important risk factor for PKS, and there were no typical ultrasound manifestations related to PKS. A combination of karyotype analysis and molecular diagnosis is an effective method for the diagnosis of PKS.  相似文献   
155.
We have developed a three-step cross-linking procedure that is specifically targeted at the carbohydrate on a protein and applied it to CD4 as a model system for studying the role of multivalent interactions in function. In the first step CD4 was oxidized with periodate, creating aldehydes that served as targets for the subsequent chemistry. Next the aldehydes were modified with cystamine, converting the reactive group into a thiol. Finally cross-linking through the thiol moiety was generated with the homobifunctional cross-linker bismaleimidohexane. With this procedure, approximately 60% of the CD4 was converted into higher molecular weight complexes that were soluble and retained function as assessed by glycoprotein gp120 binding activity. CD4 dimers and tetramers by mass were 4 and 15 times as active as CD4 monomer in blocking virus infection with HTLV-IIIB in an in vitro cellular assay. The cross-linking chemistry provides an efficient method for producing homomultimers of a glycoprotein.  相似文献   
156.
157.
As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists’ attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs) are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2) were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.  相似文献   
158.
Tyrosine phosphorylation and dephosphorylation have emerged as fundamentally important mechanisms of signal transduction and regulation in eukaryotic cells, governing many processes, but little has been known about their functions in filamentous fungi. In this study, we deleted two putative protein tyrosine phosphatase (PTP) genes (BcPTPA and BcPTPB) in Botrytis cinerea, encoding the orthologs of Saccharomyces cerevisiae Ptp2 and Ptp3, respectively. Although BcPtpA and BcPtpB have opposite functions in conidiation, they are essential for sclerotial formation in B. cinerea. BcPTPA and BcPTPB deletion mutants ΔBcPtpA-10 and ΔBcPtpB-4 showed significantly increased sensitivity to osmotic and oxidative stresses, and to cell wall damaging agents. Inoculation tests showed that both mutants exhibited dramatically decreased virulence on tomato leaves, apples and grapes. In S. cerevisiae, it has been shown that Ptp2 and Ptp3 negatively regulate the high-osmolarity glycerol (HOG) pathway and the cell wall integrity (CWI) pathway. Although both BcPtpA and BcPtpB were able to inactive Hog1 and Mpk1 in S. cerevisiae, in contrast to S. cerevisiae, they positively regulate phosphorylation of BcSak1 (the homologue of Hog1) and BcBmp3 (the homologue of Mpk1) in B. cinerea under stress conditions. These results demonstrated that functions of PTPs in B. cinerea are different from those in S. cerevisiae, and BcPtpA and BcPtpB play important roles in regulation of vegetative development, virulence and in adaptation to oxidative, osmotic and cell-wall damage stresses in B. cinerea.  相似文献   
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号