首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4718篇
  免费   451篇
  国内免费   2篇
  5171篇
  2024年   13篇
  2023年   60篇
  2022年   133篇
  2021年   272篇
  2020年   122篇
  2019年   152篇
  2018年   170篇
  2017年   150篇
  2016年   226篇
  2015年   371篇
  2014年   348篇
  2013年   360篇
  2012年   502篇
  2011年   436篇
  2010年   238篇
  2009年   179篇
  2008年   283篇
  2007年   253篇
  2006年   204篇
  2005年   199篇
  2004年   157篇
  2003年   117篇
  2002年   91篇
  2001年   21篇
  2000年   10篇
  1999年   9篇
  1998年   15篇
  1997年   8篇
  1996年   4篇
  1995年   7篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1989年   6篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1984年   5篇
  1982年   5篇
  1980年   4篇
  1978年   2篇
  1976年   2篇
  1973年   2篇
  1933年   1篇
  1931年   1篇
  1929年   1篇
  1926年   1篇
  1912年   1篇
  1907年   1篇
排序方式: 共有5171条查询结果,搜索用时 0 毫秒
21.
Biotic interactions in the plankton can be both complex and dynamic. Competition among phytoplankton is often chemically mediated, but no studies have considered whether allelopathic compounds are modified by biotic interactions. Here, we show that compounds exuded during Karenia brevis blooms were allelopathic to the cosmopolitan diatom Skeletonema costatum, but that bloom allelopathy varied dramatically among collections and years. We investigated several possible causes of this variability and found that neither bloom density nor concentrations of water-borne brevetoxins correlated with allelopathic potency. However, when we directly tested whether the presence of competing phytoplankton influenced bloom allelopathy, we found that S. costatum reduced the growth-inhibiting effects of bloom exudates, suggesting that S. costatum has a mechanism for undermining K. brevis allelopathy. Additional laboratory experiments indicated that inducible changes to K. brevis allelopathy were restricted to two diatoms among five sensitive phytoplankton species, whereas five other species were constitutively resistant to K. brevis allelopathy. Our results suggest that competitors differ in their responses to phytoplankton allelopathy, with S. costatum exhibiting a previously undescribed method of resistance that may influence community structure and alter bloom dynamics.  相似文献   
22.
One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA) and excretory-secretory product 62 (ES-62) from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-α. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th) cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs.  相似文献   
23.
The dinoflagellate photosymbiont Symbiodinium plays a fundamental role in defining the physiological tolerances of coral holobionts, but little is known about the dynamics of these endosymbiotic populations on coral reefs. Sparse data indicate that Symbiodinium populations show limited spatial connectivity; however, no studies have investigated temporal dynamics for in hospite Symbiodinium populations following significant mortality and recruitment events in coral populations. We investigated the combined influences of spatial isolation and disturbance on the population dynamics of the generalist Symbiodinium type C2 (ITS1 rDNA) hosted by the scleractinian coral Acropora millepora in the central Great Barrier Reef. Using eight microsatellite markers, we genotyped Symbiodinium in a total of 401 coral colonies, which were sampled from seven sites across a 12‐year period including during flood plume–induced coral bleaching. Genetic differentiation of Symbiodinium was greatest within sites, explaining 70–86% of the total genetic variation. An additional 9–27% of variation was explained by significant differentiation of populations among sites separated by 0.4–13 km, which is consistent with low levels of dispersal via water movement and historical disturbance regimes. Sampling year accounted for 6–7% of total genetic variation and was related to significant coral mortality following severe bleaching in 1998 and a cyclone in 2006. Only 3% of the total genetic variation was related to coral bleaching status, reflecting generally small (8%) reductions in allelic diversity within bleached corals. This reduction probably reflected a loss of genotypes in hospite during bleaching, although no site‐wide changes in genetic diversity were observed. Combined, our results indicate the importance of disturbance regimes acting together with limited oceanographic transport to determine the genetic composition of Symbiodinium types within reefs.  相似文献   
24.
25.
3-Deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) catalyzes the reaction between three-carbon phosphoenolpyruvate (PEP) and five-carbon d-arabinose 5-phosphate (A5P), generating KDO8P, a key intermediate in the biosynthetic pathway to 3-deoxy-D-manno-octulosonate, a component of the lipopolysaccharide of the Gram-negative bacterial cell wall. Both metal-dependent and metal-independent forms of KDO8PS have been characterized. KDO8PS is evolutionarily and mechanistically related to the first enzyme of the shikimate pathway, the obligately divalent metal ion-dependent 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS) that couples PEP and four-carbon D-erythrose 4-phosphate (E4P) to give DAH7P. In KDO8PS, an absolutely conserved KANRS motif forms part of the A5P binding site, whereas in DAH7PS, an absolutely conserved KPR(S/T) motif accommodates E4P. Here, we have characterized four mutants of this motif (AANRS, KAARS, KARS, and KPRS) in metal-dependent KDO8PS from Acidithiobacillus ferrooxidans and metal-independent KDO8PS from Neisseria meningitidis to test the roles of the universal Lys and the Ala-Asn portion of the KANRS motif. The X-ray structures, determined for the N. meningitidis KDO8PS mutants, indicated no gross structural penalty resulting from mutation, but the subtle changes observed in the active sites of these mutant proteins correlated with their altered catalytic function. (1) The AANRS mutations destroyed catalytic activity. (2) The KAARS mutations lowered substrate selectivity, as well as activity. (3) Replacing KANRS with KARS or KPRS destroyed KDO8PS activity but did not produce a functional DAH7PS. Thus, Lys is critical to catalysis, and other changes are necessary to switch substrate specificity for both the metal-independent and metal-dependent forms of these enzymes.  相似文献   
26.
27.
Fatty acid-amino acid conjugates (FACs) have been identified in Lepidopteran larvae as elicitors of plant defenses. Plant responses include the production of primary defense compounds and induction of secondary defense strategies including attraction of parasitoid wasps. These elicitors are present despite fitness costs, suggesting that they are important for the larvae’s survival. In order to exploit FAC-mediated plant defense responses in agricultural settings, an understanding of FAC purpose and metabolism is crucial. To clarify their role, enzymes involved in this metabolism are being investigated. In this work a previously undiscovered FAC hydrolase was purified from Heliothis virescens frass by liquid chromatography and PAGE techniques and was identified as an aminoacylase-like protein (L-ACY-1) using MALDI-ToF/ToF and Edman sequencing. The full length gene was cloned and expressed in Escherichia coli and a polyclonal antibody against L-ACY-1 was made. L-ACY-1 was confirmed to be responsible for FAC hydrolysis activity through inhibition of N-linolenoyl-l-glutamine hydrolysis by titration with the polyclonal anti-L-ACY-1 antibody. L-ACY-1 activity is dependent on a divalent cation. This is the first time an aminoacylase has been described from an insect. L-ACY-1 appears to play a vastly different role in insects than ACYs do in mammals and may be involved in maintaining glutamine supplies for gut tissue metabolism. Identification of L-ACY-1, a FAC hydrolase, clarifies a previously uncharacterized portion of FAC metabolism.  相似文献   
28.
ClpS2 is a small protein under development as a probe for selectively recognizing N-terminal amino acids of N-degron peptide fragments. To understand the structural basis of ClpS2 specificity for an N-terminal amino acid, all atom molecular dynamics (MD) simulations were conducted using the sequence of a bench-stable mutant of ClpS2, called PROSS. We predicted that a single amino acid leucine to asparagine substitution would switch the specificity of PROSS ClpS2 to an N-terminal tyrosine over the preferred phenylalanine. Experimental validation of the mutant using a fluorescent yeast-display assay showed an increase in tyrosine binding over phenylalanine, in support of the proposed hypothesis.  相似文献   
29.
30.
As Caenorhabditis elegans hermaphrodites age, sperm become depleted, ovulation arrests, and oocytes accumulate in the gonad arm. Large ribonucleoprotein (RNP) foci form in these arrested oocytes that contain RNA-binding proteins and translationally masked maternal mRNAs. Within 65 min of mating, the RNP foci dissociate and fertilization proceeds. The majority of arrested oocytes with foci result in viable embryos upon fertilization, suggesting that foci are not deleterious to oocyte function. We have determined that foci formation is not strictly a function of aging, and the somatic, ceh-18, branch of the major sperm protein pathway regulates the formation and dissociation of oocyte foci. Our hypothesis for the function of oocyte RNP foci is similar to the RNA-related functions of processing bodies (P bodies) and stress granules; here, we show three orthologs of P body proteins, DCP-2, CAR-1 and CGH-1, and two markers of stress granules, poly (A) binding protein (PABP) and TIA-1, appear to be present in the oocyte RNP foci. Our results are the first in vivo demonstration linking components of P bodies and stress granules in the germ line of a metazoan. Furthermore, our data demonstrate that formation of oocyte RNP foci is inducible in non-arrested oocytes by heat shock, osmotic stress, or anoxia, similar to the induction of stress granules in mammalian cells and P bodies in yeast. These data suggest commonalities between oocytes undergoing delayed fertilization and cells that are stressed environmentally, as to how they modulate mRNAs and regulate translation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号