首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8121篇
  免费   720篇
  国内免费   603篇
  9444篇
  2024年   22篇
  2023年   117篇
  2022年   286篇
  2021年   457篇
  2020年   304篇
  2019年   363篇
  2018年   343篇
  2017年   239篇
  2016年   397篇
  2015年   524篇
  2014年   677篇
  2013年   615篇
  2012年   739篇
  2011年   624篇
  2010年   434篇
  2009年   347篇
  2008年   423篇
  2007年   403篇
  2006年   292篇
  2005年   254篇
  2004年   200篇
  2003年   192篇
  2002年   139篇
  2001年   139篇
  2000年   129篇
  1999年   146篇
  1998年   91篇
  1997年   79篇
  1996年   68篇
  1995年   48篇
  1994年   56篇
  1993年   31篇
  1992年   49篇
  1991年   40篇
  1990年   23篇
  1989年   32篇
  1988年   22篇
  1987年   29篇
  1986年   13篇
  1985年   20篇
  1984年   12篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1965年   1篇
排序方式: 共有9444条查询结果,搜索用时 0 毫秒
31.
Mechanical strain is one of the important epigenetic factors that cause deformation and differentiation of skeletal muscles. This research was designed to investigate how myoblast deformation occurs after cyclic strain loading. Myoblasts were passaged three times and harvested; various cyclic strains (2.5kPa, 5kPa and 10kPa) were then loaded using a pulsatile mechanical system. The adaptive response of the myoblasts was observed at different time points (0.5h, 1h, 6h and 12h) post-loading. At the early stage of cyclic strain loading (<1h), almost no visible morphological changes were observed in the myoblasts. The actin cytoskeleton showed a disordered arrangement and a weak fluorescence expression; there was little expression of talin. At 6h and 12h post-loading, the myoblasts changed their orientation to parallel (in the 2.5kPa and 5kPa groups) or perpendicular (in the 10kPa group) to the direction of strain. Fluorescence expression of both the actin cytoskeleton and talin was significantly increased. The results suggest that cyclic strain has at least two ways to regulate adaptation of myoblasts: (1) by directly affecting actin cytoskeleton at an early stage post-loading to cause depolymerization; and (2) by later chemical signals transmitted from the extracellular side to intracellular side to initiate repolymerization.  相似文献   
32.
Traits such as grain shape, panicle length and seed shattering, play important roles in grain yield and harvest. In this study, the cloning and functional analysis of PANICLE TRAITS 2 (PT2), a novel gene from the Indica rice Chuandali (CDL), is reported. PT2 is synonymous with Growth‐Regulating Factor 4 (OsGRF4), which encodes a growth‐regulating factor that positively regulates grain shape and panicle length and negatively regulates seed shattering. Higher expression of OsGRF4 is correlated with larger grain, longer panicle and lower seed shattering. A unique OsGRF4 mutation, which occurs at the OsmiRNA396 target site of OsGRF4, seems to be associated with high levels of OsGRF4 expression, and results in phenotypic difference. Further research showed that OsGRF4 regulated two cytokinin dehydrogenase precursor genes (CKX5 and CKX1) resulting in increased cytokinin levels, which might affect the panicle traits. High storage capacity and moderate seed shattering of OsGRF4 may be useful in high‐yield breeding and mechanized harvesting of rice. Our findings provide additional insight into the molecular basis of panicle growth.  相似文献   
33.
Xu Y  Wu F  Tan L  Kong L  Xiong L  Deng J  Barbera AJ  Zheng L  Zhang H  Huang S  Min J  Nicholson T  Chen T  Xu G  Shi Y  Zhang K  Shi YG 《Molecular cell》2011,42(4):451-464
DNA methylation at the 5 position of cytosine (5mC) in the mammalian genome is a key epigenetic event critical for various cellular processes. The ten-eleven translocation (Tet) family of 5mC-hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), offers a way for dynamic regulation of DNA methylation. Here we report that Tet1 binds to unmodified C or 5mC- or 5hmC-modified CpG-rich DNA through its CXXC domain. Genome-wide mapping of Tet1 and 5hmC reveals mechanisms by which Tet1 controls 5hmC and 5mC levels in mouse embryonic stem cells (mESCs). We also uncover a comprehensive gene network influenced by Tet1. Collectively, our data suggest that Tet1 controls DNA methylation both by binding to CpG-rich regions to prevent unwanted DNA methyltransferase activity, and by converting 5mC to 5hmC through hydroxylase activity. This Tet1-mediated antagonism of CpG methylation imparts differential maintenance of DNA methylation status at Tet1 targets, ultimately contributing to mESC differentiation and the onset of embryonic development.  相似文献   
34.
35.
36.
37.
The use of transplanting functional neural stem cells (NSCs) derived from induced pluripotent stem cells (iPSCs) has increased for the treatment of brain diseases. As such, it is important to understand the molecular mechanisms that promote NSCs differentiation of iPSCs for future NSC-based therapies. Sirtuin 1 (SIRT1), a NAD+-dependent protein deacetylase, has attracted significant attention over the past decade due to its prominent role in processes including organ development, longevity, and cancer. However, it remains unclear whether SIRT1 plays a role in the differentiation of mouse iPSCs toward NSCs. In this study, we produced NSCs from mouse iPSCs using serum-free medium supplemented with retinoic acid. We then assessed changes in the expression of SIRT1 and microRNA-34a, which regulates SIRT1 expression. Moreover, we used a SIRT1 inhibitor to investigate the role of SIRT1 in NSCs differentiation of iPSCs. Data revealed that the expression of SIRT1 decreased, whereas miRNAs-34a increased, during this process. In addition, the inhibition of SIRT1 enhanced the generation of NSCs and mature neurocytes. This suggests that SIRT1 negatively regulated the differentiation of mouse iPSCs into NSCs, and that this process may be regulated by miRNA-34a.  相似文献   
38.
葛洲坝枢纽下游白鲟性腺发育的初步观察   总被引:2,自引:0,他引:2  
白鲟Psephurus gladius(Martens)是我国特有的稀珍鱼类,近年来对其生物学做了一些初步的研究。鉴于它的种群较小,在学术上具有较为重要的价值,所以,长江兴修水利工程以后对其资源的影响及资源保护和增殖问题,特别是聚集于坝下江段的白鲟亲鱼性腺能否发育成熟等问题,和中华鲟一样引起了水产科学工作者的普遍关注。    相似文献   
39.
Expression vectors of human granulocyte colony stimulating factor (G-CSG) and long acting tissue plasminogen activator (La-tPA) in mammary gland were constructed using promoters of mouse whey acid protein gene (WAP) and sheep β-lactoglobulin gene (BLG) with sizes of 2.6 and 5 kb respectively. Two kinds of transgenic mice of G-CSF and La-tPA were produced with microinjection. The expression of G-CSF and La-tPA was achieved in mammary glands of transgenic mice, respectively. In order to establish dual transgenic mice of La-tPA /G-CSF, transgenic mice carrying G-CSF and La-tPA gene characterized with specific expression in mammary gland were mated. La-tPA/G-CSF dual transgenic mice were screened out from the hybrid offspring by Once-PCR. The co-expression of La-tPA and G-CSF in mammary gland of the dual transgenic mice was confirmed by the milk assayed and Northern blot analysis. Some parameters about the dual transgenic mice indicated that there were fewer litters than that of normal mice. The ratio of dual transgenes was 46.1% in F1 generation, and offspring’s sex ratio was normal. Hence a dual transgenic mouse model was established for the study of co-expression foreign proteins in mammary gland.  相似文献   
40.

Background

Bone mass is maintained by continuous remodeling through repeated cycles of bone resorption by osteoclasts and bone formation by osteoblasts. This remodeling process is regulated by many systemic and local factors.

Methodology/Principal Findings

We identified collagen triple helix repeat containing-1 (Cthrc1) as a downstream target of bone morphogenetic protein-2 (BMP2) in osteochondroprogenitor-like cells by PCR-based suppression subtractive hybridization followed by differential hybridization, and found that Cthrc1 was expressed in bone tissues in vivo. To investigate the role of Cthrc1 in bone, we generated Cthrc1-null mice and transgenic mice which overexpress Cthrc1 in osteoblasts (Cthrc1 transgenic mice). Microcomputed tomography (micro-CT) and bone histomorphometry analyses showed that Cthrc1-null mice displayed low bone mass as a result of decreased osteoblastic bone formation, whereas Cthrc1 transgenic mice displayed high bone mass by increase in osteoblastic bone formation. Osteoblast number was decreased in Cthrc1-null mice, and increased in Cthrc1 transgenic mice, respectively, while osteoclast number had no change in both mutant mice. In vitro, colony-forming unit (CFU) assays in bone marrow cells harvested from Cthrc1-null mice or Cthrc1 transgenic mice revealed that Cthrc1 stimulated differentiation and mineralization of osteoprogenitor cells. Expression levels of osteoblast specific genes, ALP, Col1a1, and Osteocalcin, in primary osteoblasts were decreased in Cthrc1-null mice and increased in Cthrc1 transgenic mice, respectively. Furthermore, BrdU incorporation assays showed that Cthrc1 accelerated osteoblast proliferation in vitro and in vivo. In addition, overexpression of Cthrc1 in the transgenic mice attenuated ovariectomy-induced bone loss.

Conclusions/Significance

Our results indicate that Cthrc1 increases bone mass as a positive regulator of osteoblastic bone formation and offers an anabolic approach for the treatment of osteoporosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号