首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252篇
  免费   25篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   5篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   10篇
  2013年   14篇
  2012年   13篇
  2011年   13篇
  2010年   6篇
  2009年   6篇
  2008年   14篇
  2007年   20篇
  2006年   9篇
  2005年   12篇
  2004年   10篇
  2003年   10篇
  2002年   12篇
  2001年   5篇
  2000年   11篇
  1999年   11篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   9篇
  1993年   1篇
  1992年   13篇
  1991年   2篇
  1990年   1篇
  1989年   6篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1970年   4篇
  1960年   1篇
排序方式: 共有277条查询结果,搜索用时 250 毫秒
21.
To elucidate the contribution of LINE-like retrotransposon Zepp elements to the formation and maintenance of chromosomal telomeres, newly formed minichromosomes in irradiated Chlorella vulgaris cells were isolated and structurally characterized. A minichromosome (miniV4) of ~700 kb in size contained a Zepp cluster taking the place of the telomeric repeats on one terminus, whereas the other end of this chromosome consisted of canonical telomeric repeats. The Zepp copies in this cluster were in a tandem array with their poly(A) tails towards the centromere. Another minichromosome Y32 (~400 kb in size) was shown to have several copies of Zepp elements on both termini. On the right arm terminus, two copies of Zepp were found in a tandem array with poly(A) tracts facing towards the chromosomal end. The poly(A) tail and the 3′-end of ~400 bp of the distal copy were replaced by the telomeric repeats. On the 5′-side of the proximal copy was another Zepp element in the reverse orientation. These newly formed telomeric structures are very similar to those previously found in the left arm of chromosome I and the terminus of an unidentified chromosome and support the model of Zepp-mediated restoration and maintenance of Chlorella telomeres.  相似文献   
22.
UV-induced melanogenesis is a well known physiological response of human skin exposed to solar radiation; however, the signaling molecules involved in the stimulation of melanogenesis in melanocytes following UV exposure remain unclear. In this study we induced melanogenesis in vitro in normal human epidermal melanocytes using a single irradiation with UVA at 1 kJ/m2 and examined the potential involvement of mitogen-activated protein kinases (MAPK) as UVA-responsive signaling molecules in those cells. UVA irradiation did not affect the proliferation of melanocytes, but it did increase tyrosinase mRNA expression, which reached a maximum level 4 hr after UVA irradiation. The amount of tyrosinase protein, as quantitated by immunoblotting, was also increased at 24 hr following UVA irradiation. Among the MAPK examined, extracellular signal-related kinase (ERK) 1/2 was phosphorylated within 15 min of UVA irradiation, but no such phosphorylation was observed for c-Jun N-terminal kinases (JNK) or p38. Accordingly, the activity of ERK1/2 was also increased shortly after UVA irradiation. These responses of ERK1/2 to UVA irradiation were markedly inhibited when cells were pre-treated with N-acetyl-L-cysteine, an antioxidant, or with suramin, a tyrosine kinase receptor inhibitor. The formation of (6-4)photoproducts or cyclobutane pyrimidine dimers was not detected in cellular DNA after UVA irradiation. These findings suggest that a single UVA irradiation-induced melanogenesis is associated with the activation of ERK1/2 by upstream signals that originate from reactive oxygen species or from activated tyrosine kinase receptors, but not from damaged DNA.  相似文献   
23.
Glycogen debranching enzyme (GDE) has 4-alpha-glucanotransferase and amylo-1,6-glucosidase activities in the single polypeptide chain. We analyzed the detailed action profile of GDE from Saccharomyces cerevisiae on amylose and tested whether GDE catalyzes cyclization of amylose. GDE treatment resulted in a rapid reduction of absorbance of iodine-amylose complex and the accumulation of a product that was resistant to an exo-amylase (glucoamylase [GA]) but was degraded by an endo-type alpha-amylase to glucose and maltose. These results indicated that GDE catalyzed cyclization of amylose to produce cyclic alpha-1,4 glucan (cycloamylose). The formation of cycloamylose was confirmed by high-performance anion-exchange chromatography, and the size was shown to range from a degree of polymerization of 11 to a degree of polymerization around 50. The minimum size and the size distribution of cycloamylose were different from those of cycloamylose produced by other 4-alpha-glucanotransferases. GDE also efficiently produced cycloamylose even from the branched glucan substrate, starch, demonstrating its potential for industrial production of cycloamylose.  相似文献   
24.
25.
We demonstrate direct ethanol fermentation from amorphous cellulose using cellulase-co-expressing yeast. Endoglucanases (EG) and cellobiohydrolases (CBH) from Trichoderma reesei, and β-glucosidases (BGL) from Aspergillus aculeatus were integrated into genomes of the yeast strain Saccharomyces cerevisiae MT8-1. BGL was displayed on the yeast cell surface and both EG and CBH were secreted or displayed on the cell surface. All enzymes were successfully expressed on the cell surface or in culture supernatants in their active forms, and cellulose degradation was increased 3- to 5-fold by co-expressing EG and CBH. Direct ethanol fermentation from 10 g/L phosphoric acid swollen cellulose (PASC) was also carried out using EG-, CBH-, and BGL-co-expressing yeast. The ethanol yield was 2.1 g/L for EG-, CBH-, and BGL-displaying yeast, which was higher than that of EG- and CBH-secreting yeast (1.6 g/L ethanol). Our results show that cell surface display is more suitable for direct ethanol fermentation from cellulose.  相似文献   
26.
Comparisons of the genomic structure of 3 mammalian major histocompatibility complexes (MHCs), human HLA, canine DLA, and feline FLA revealed remarkable structural differences between HLA and the other 2 MHCs. The 4.6-Mb HLA sequence was compared with the 3.9-Mb DLA sequence from 2 supercontigs generated by 7x whole-genome shotgun assembly and 3.3-Mb FLA draft sequence. For FLA, we confirm that 1) feline FLA was split into 2 pieces within the TRIM (member of the tripartite motif) gene family found in human HLA, 2) class II, III, and I regions were placed in the pericentromeric region of the long arm of chromosome B2, and 3) the remaining FLA was located in subtelomeric region of the short arm of chromosome B2. The exact same chromosome break was found in canine DLA structure, where class II, III, and I regions were placed in a pericentromeric region of chromosome 12 whereas the remaining region was located in a subtelomeric region of chromosome 35, suggesting that this chromosome break occurred once before the split of felid and canid more than 55 million years ago. However, significant differences were found in the content of genes in both pericentromeric and subtelomeric regions in DLA and FLA, the gene number, and amplicon structure of class I genes plus 2 other class I genes found on 2 additional chromosomes; canine chromosomes 7 and 18 suggest the dynamic nature in the evolution of MHC class I genes.  相似文献   
27.
The chemokine receptor genes of the CCR cluster on human chromosome 3p21 play important roles in humoral and cellular immune responses. Several of these receptors have been shown to influence human immunodeficiency virus infection and progression to AIDS, and their homologues may play a role in feline immunodeficiency virus infection. We report the isolation and sequencing of a 150-kb domestic cat BAC clone containing the feline CCR genes CCR1, CCR2, CCR3, and CCR5 to further analyze these four receptor genes within the family Felidae. Comparative and phylogenetic analyses reveal evidence for historic gene conversion between the adjacent CCR2 and CCR5 genes in the Felidae and in three independent mammalian orders (Primates, Cetartiodactyla, and Rodentia), resulting in higher than expected levels of sequence similarity between the two paralogous genes within each order. The gene conversion was restricted to the structural (transmembrane) domains of the CCR2 and CCR5 genes. We also discovered a recent gene conversion event between the third extracellular loop of CCR2 and CCR5 genes that was fixed in Asian lions and found at low frequency in African lions (Panthera leo), suggesting that this domain may have an important functional role. Our results suggest that ongoing parallel gene conversion between CCR2 and CCR5 promotes receptor heterodimerization in independent evolutionary lineages and offers an effective adaptive strategy for gene editing and coevolution among interactive immune response genes in mammals.  相似文献   
28.
9,10-Phenanthrenequinone (9,10-PQ), a redox-active quinone in diesel exhausts, triggers cellular apoptosis via reactive oxygen species (ROS) generation in its redox cycling. This study found that induction of CCAAT/enhancer-binding protein-homologous protein (CHOP), a pro-apoptotic factor derived from endoplasmic reticulum stress, participates in the mechanism of rat endothelial cell damage. The 9,10-PQ-mediated CHOP induction was strengthened by a proteasome inhibitor (MG132) and the MG132-induced cell sensitization to the 9,10-PQ toxicity was abolished by a ROS inhibitor, suggesting that ROS generation and consequent proteasomal dysfunction are responsible for the CHOP up-regulation caused by 9,10-PQ. Aldo-keto reductase (AKR) 1C15 expressed in rat endothelial cells reduced 9,10-PQ into 9,10-dihydroxyphenanthrene concomitantly with superoxide anion formation, implying its participation in evoking the 9,10-PQ-redox cycling. The 9,10-PQ-induced damage was augmented by AKR1C15 over-expression. 9,10-PQ also provoked the AKR1C15 up-regulation, which sensitized against the quinone toxicity. These results suggest the presence of a negative feedback loop exacerbating the quinone toxicity in rat endothelial cells.  相似文献   
29.
30.
It is widely recognized that activated hepatic stellate cells (HSC) play a pivotal role in development of liver fibrosis. A platelet-derived growth factor (PDGF) is the most potent mitogen for HSC. The aim of this study was to examine the effect of imatinib mesylate (STI-571, Gleevec), a clinically used PDGF receptor (PDGFR) tyrosine kinase inhibitor, on development of experimental liver fibrosis. The rat model of pig serum-induced hepatic fibrosis was used to assess the effect of daily oral administration of STI-571 on the indexes of fibrosis. STI-571 markedly attenuated development of liver fibrosis and hepatic hydroxyproline and serum fibrosis markers. The number of alpha-smooth muscle actin-positive cells and mRNA expression of alpha2-(I)-procollagen, tissue inhibitor of metalloproteinases-1, and transforming growth factor-beta were also significantly suppressed by STI-571. Our in vitro study showed that STI-571 markedly attenuated PDGF-BB-induced proliferation and migration and alpha-SMA and alpha2-(I)-procollagen mRNA of activated HSC in a dose-dependent manner. STI-571 also significantly attenuated PDGF-BB-induced phosphorylation of PDGFR-beta, MEK1/2, and Akt in activated HSC. Because STI-571 is widely used in clinical practice, it may provide an effective new strategy for antifibrosis therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号