首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   25篇
  2023年   2篇
  2022年   6篇
  2021年   16篇
  2020年   3篇
  2019年   16篇
  2018年   12篇
  2017年   9篇
  2016年   9篇
  2015年   13篇
  2014年   20篇
  2013年   33篇
  2012年   36篇
  2011年   25篇
  2010年   18篇
  2009年   11篇
  2008年   28篇
  2007年   12篇
  2006年   20篇
  2005年   9篇
  2004年   9篇
  2003年   9篇
  2002年   10篇
  2001年   3篇
  2000年   2篇
  1987年   1篇
  1984年   2篇
  1982年   1篇
排序方式: 共有335条查询结果,搜索用时 953 毫秒
71.
During meiosis I, ring-shaped cohesin complexes play important roles in aiding the proper segregation of homologous chromosomes. RAD21L is a meiosis-specific vertebrate cohesin that is required for spermatogenesis in mice but is dispensable for oogenesis in young animals. The role of this cohesin in other vertebrate models has not been explored. Here, we tested if the zebrafish homolog Rad21l1 is required for meiotic chromosome dynamics during spermatogenesis and oogenesis. We found that Rad21l1 localizes to unsynapsed chromosome axes. It is also found between the axes of the mature tripartite synaptonemal complex (SC) in both sexes. We knocked out rad21l1 and found that nearly all rad21l1-/- mutants develop as fertile males, suggesting that the mutation causes a defect in juvenile oogenesis, since insufficient oocyte production triggers female to male sex reversal in zebrafish. Sex reversal was partially suppressed by mutation of the checkpoint gene tp53, suggesting that the rad21l1 mutation activates Tp53-mediated apoptosis or arrest in females. This response, however, is not linked to a defect in repairing Spo11-induced double-strand breaks since deletion of spo11 does not suppress the sex reversal phenotype. Compared to tp53 single mutant controls, rad21l1-/- tp53-/- double mutant females produce poor quality eggs that often die or develop into malformed embryos. Overall, these results indicate that the absence of rad21l1-/- females is due to a checkpoint-mediated response and highlight a role for a meiotic-specific cohesin subunit in oogenesis but not spermatogenesis.  相似文献   
72.
High circulating levels of lactate and high mobility group box-1 (HMGB1) are associated with the severity and mortality of sepsis. However, it is unclear whether lactate could promote HMGB1 release during sepsis. The present study demonstrated a novel role of lactate in HMGB1 lactylation and acetylation in macrophages during polymicrobial sepsis. We found that macrophages can uptake extracellular lactate via monocarboxylate transporters (MCTs) to promote HMGB1 lactylation via a p300/CBP-dependent mechanism. We also observed that lactate stimulates HMGB1 acetylation by Hippo/YAP-mediated suppression of deacetylase SIRT1 and β-arrestin2-mediated recruitment of acetylases p300/CBP to the nucleus via G protein-coupled receptor 81 (GPR81). The lactylated/acetylated HMGB1 is released from macrophages via exosome secretion which increases endothelium permeability. In vivo reduction of lactate production and/or inhibition of GPR81-mediated signaling decreases circulating exosomal HMGB1 levels and improves survival outcome in polymicrobial sepsis. Our results provide the basis for targeting lactate/lactate-associated signaling to combat sepsis.Subject terms: Infectious diseases, Signal transduction, Epigenetics  相似文献   
73.
Poly(ADP-ribose) polymerase-1 (PARP-1) and poly(ADP-ribose) glycohydrolase (PARG) are enzymes that modify target proteins by the addition and removal, respectively, of ADP-ribose polymers. Although a role for PARP-1 in gene regulation has been well established, the role of PARG is less clear. To investigate how PARP-1 and PARG coordinately regulate global patterns of gene expression, we used short hairpin RNAs to stably knock down PARP-1 or PARG in MCF-7 cells followed by expression microarray analyses. Correlation analyses showed that the majority of genes affected by the knockdown of one factor were similarly affected by the knockdown of the other factor. The most robustly regulated common genes were enriched for stress-response and metabolic functions. In chromatin immunoprecipitation assays, PARP-1 and PARG localized to the promoters of positively and negatively regulated target genes. The levels of chromatin-bound PARG at a given promoter generally correlated with the levels of PARP-1 across the subset of promoters tested. For about half of the genes tested, the binding of PARP-1 at the promoter was dependent on the binding of PARG. Experiments using stable re-expression of short hairpin RNA-resistant catalytic mutants showed that PARP-1 and PARG enzymatic activities are required for some, but not all, target genes. Collectively, our results indicate that PARP-1 and PARG, nuclear enzymes with opposing enzymatic activities, localize to target promoters and act in a similar, rather than antagonistic, manner to regulate gene expression.  相似文献   
74.
75.
Previous studies reported that extracellular HSP72 (eHSP72) correlates with poor prognosis, markers of vascular dysfunction, and the severity of cardiovascular diseases, associated with a systemic oxidative and inflammatory profile. On the other hand, eHSP72 may represent immune-regulatory signaling that is related to exercise benefits, but the association between physical activity levels and eHSP72 levels is not established. Thus, since regular physical activity may avoid oxidative stress and inflammation, we investigate whether detectable levels of eHSP72 in plasma are associated with physical activity and antioxidant enzyme activity levels in hypertensive subjects. Physical activity levels of hypertensive subjects (n?=?140) were measured by tri-axial movement sensor pedometer for 24 h during 5 consecutive days. One day after, blood was collected into heparinized tubes for oxidative stress analyses (catalase—CAT and superoxide dismutase—SOD activities and malondialdehyde levels) or in disodium EDTA tubes for eHSP72 assays. Thus, hypertensive subjects were classified as physically inactive (<?10,000 footsteps/day) or active (>?than 10,000 footsteps/day) and according detectable or not detectable eHSP72 levels in plasma, performing the inactive/eHSP72?, active/eHSP72?, inactive/eHSP72+, and active/eHSP72+ groups. We found that detectable levels of eHSP72 in plasma were associated with physical activity levels and low oxidative stress profile (Higher CAT and SOD activities and low malondialdehyde levels). eHSP72 levels can be used as a biomarker of the amount of physical activity necessary to improve antioxidant defense and thus cardiovascular health in hypertensive subjects.  相似文献   
76.
为了解肺炎支原体(Mycoplasma pneumoniae)合并Epstein-Barr 病毒(Epstein-Barr virus,EBV)感染患儿的血清因子水平和免疫功能,选取2016年9月-2017年3月于上海交通大学附属第六人民医院儿科住院的肺炎支原体肺炎(Mycoplasma pneumoniae pneumonia,MPP)合并EBV感染患儿(A组)、单纯MPP患儿(B组)和小儿骨科择期行六指切除手术的患儿(C组),采用酶联免疫吸附试验(enzyme-linked immunosorbent assay,ELISA)检测3组患儿血清白细胞介素6(interleukin 6,IL-6)、IL-4、γ干扰素(interferon γ,IFN-γ)、IL-10水平。结果显示,A和B组IL-6、IL-4、FIN-γ、IL-10水平高于C组(P<0.05),A组IL-6、IL-10水平高于B组(P<0.05),且A组中重症肺炎患儿血清IL-6、IL-10、IL-4水平较非重症肺炎患儿高(P<0.05)。结果提示,MPP合并EBV感染患儿体内存在细胞免疫紊乱,MPP合并EBV感染后可通过诱导机体分泌 IL-6、IL-4、IFN-γ、IL-10而造成组织损伤。因此, IL-6、IL-4、IFN-γ、IL-10的检测对MPP合并EBV感染的诊断及评估病情具有重要意义。  相似文献   
77.
The physical properties of lipid bilayers, such as curvature and fluidity, can affect the interactions of polypeptides with membranes, influencing biological events. Additionally, given the growing interest in peptide-based therapeutics, understanding the influence of membrane properties on membrane-associated peptides has potential utility. pH low insertion peptides (pHLIPs) are a family of water-soluble peptides that can insert across cell membranes in a pH-dependent manner, enabling the use of pH to follow peptide-lipid interactions. Here we study pHLIP interactions with liposomes varying in size and composition, to determine the influence of several key membrane physical properties. We find that pHLIP binding to bilayer surfaces at neutral pH is governed by the ease of access to the membrane’s hydrophobic core, which can be facilitated by membrane curvature, thickness, and the cholesterol content of the membrane. After surface binding, if the pH is lowered, the kinetics of pHLIP folding to form a helix and subsequent insertion across the membrane depends on the fluidity and energetic dynamics of the membrane. We showed that pHLIP is capable of forming a helix across lipid bilayers of different thicknesses at low pH. However, the kinetics of the slow phase of insertion corresponding to the translocation of C-terminal end of the peptide across lipid bilayer, vary approximately twofold, and correlate with bilayer thickness and fluidity. Although these influences are not large, local curvature variations in membranes of different fluidity could selectively influence surface binding in mixed cell populations.  相似文献   
78.
In this study, we present molecular dynamics simulations of the antiviral drug triazavirine, that affects formation of amyloid-like fibrils of the model peptide (SI). According to our simulations, triazavirine is able to form linear supramolecular structures which can act as shields and prevent interactions between SI monomers. This model, as validated by simulations, provides an adequate explanation of triazavirine’s mechanism of action as it pertains to SI peptide fibril formation.  相似文献   
79.
Gravity-driven membrane (GDM) filtration is a promising tool for low-cost decentralized drinking water production. The biofilms in GDM systems are able of removing harmful chemical components, particularly toxic cyanobacterial metabolites such as microcystins (MCs). This is relevant for the application of GDM filtration because anthropogenic nutrient input and climate change have led to an increase of toxic cyanobacterial blooms. However, removal of MCs in newly developing GDM biofilms is only established after a prolonged period of time. Since cyanobacterial blooms are transient phenomena, it is important to understand MC removal in mature biofilms with or without prior toxin exposure. In this study, the microbial community composition of GDM biofilms was investigated in systems fed with water from a lake with periodic blooms of MC-producing cyanobacteria. Two out of three experimental treatments were supplemented with dead biomass of a MC-containing cyanobacterial strain, or of a non-toxic mutant, respectively. Analysis of bacterial rRNA genes revealed that both biomass-amended treatments were significantly more similar to each other than to a non-supplemented control. Therefore, it was hypothesized that biofilms could potentially be ‘primed’ for rapid MC removal by prior addition of non-toxic biomass. A subsequent experiment showed that MC removal developed significantly faster in mature biofilms that were pre-fed with biomass from the mutant strain than in unamended controls, indicating that MC degradation was a facultative trait of bacterial populations in GDM biofilms. The significant enrichment of bacteria related to both aerobic and anaerobic MC degraders suggested that this process might have occurred in parallel in different microniches.  相似文献   
80.
Ulvan is the main polysaccharide component of the Ulvales (green seaweed) cell wall. It is composed of disaccharide building blocks comprising 3-sulfated rhamnose linked to d-glucuronic acid (GlcUA), l-iduronic acid (IdoUA), or d-xylose (Xyl). The degradation of ulvan requires ulvan lyase, which catalyzes the endolytic cleavage of the glycoside bond between 3-sulfated rhamnose and uronic acid according to a β-elimination mechanism. The first characterized ulvan lyase was identified in Nonlabens ulvanivorans, an ulvanolytic bacterial isolate. In the current study, we have identified and biochemically characterized novel ulvan lyases from three Alteromonadales isolated bacteria. Two homologous ulvan lyases (long and short) were found in each of the bacterial genomes. The protein sequences have no homology to the previously reported ulvan lyases and therefore are the first representatives of a new family of polysaccharide lyases. The enzymes were heterologously expressed in Escherichia coli to determine their mode of action. The heterologous expressed enzymes were secreted into the milieu subsequent to their signal sequence cleavage. An endolytic mode of action was observed and studied using gel permeation chromatography and 1H NMR. In contrast to N. ulvanivorans ulvan lyase, cleavage occurred specifically at the GlcUA residues. In light of the genomic context and modular structure of the ulvan lyase families identified to date, we propose that two ulvan degradation pathways evolved independently.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号