首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2182篇
  免费   172篇
  国内免费   111篇
  2023年   12篇
  2022年   42篇
  2021年   80篇
  2020年   47篇
  2019年   56篇
  2018年   60篇
  2017年   46篇
  2016年   76篇
  2015年   131篇
  2014年   161篇
  2013年   155篇
  2012年   201篇
  2011年   175篇
  2010年   104篇
  2009年   84篇
  2008年   107篇
  2007年   108篇
  2006年   99篇
  2005年   83篇
  2004年   87篇
  2003年   57篇
  2002年   58篇
  2001年   39篇
  2000年   33篇
  1999年   45篇
  1998年   25篇
  1997年   26篇
  1996年   19篇
  1995年   23篇
  1994年   15篇
  1993年   19篇
  1992年   21篇
  1991年   11篇
  1990年   16篇
  1989年   15篇
  1988年   13篇
  1987年   10篇
  1986年   13篇
  1985年   14篇
  1984年   6篇
  1983年   10篇
  1982年   5篇
  1981年   5篇
  1980年   9篇
  1976年   6篇
  1974年   6篇
  1973年   3篇
  1972年   4篇
  1966年   3篇
  1965年   6篇
排序方式: 共有2465条查询结果,搜索用时 15 毫秒
71.
This protocol presents a method to perform quantitative, single-cell in situ analyses of protein expression to study lineage specificationin mouse preimplantation embryos. The procedures necessary for embryo collection, immunofluorescence, imaging on a confocal microscope, and image segmentation and analysis are described. This method allows quantitation of the expression of multiple nuclear markers and the spatial (XYZ) coordinates of all cells in the embryo. It takes advantage of MINS, an image segmentation software tool specifically developed for the analysis of confocal images of preimplantation embryos and embryonic stem cell (ESC) colonies. MINS carries out unsupervised nuclear segmentation across the X, Y and Z dimensions, and produces information on cell position in three-dimensional space, as well as nuclear fluorescence levels for all channels with minimal user input. While this protocol has been optimized for the analysis of images of preimplantation stage mouse embryos, it can easily be adapted to the analysis of any other samples exhibiting a good signal-to-noise ratio and where high nuclear density poses a hurdle to image segmentation (e.g., expression analysis of embryonic stem cell (ESC) colonies, differentiating cells in culture, embryos of other species or stages, etc.).  相似文献   
72.

Purpose

To explore the effects of methane-rich saline (CH4 saline) on the capability of one-time exhaustive exercise in male SD rats.

Methods

Thirty rats were equally divided into to three groups at random: control group (C), placebo group (P) and methane saline group (M). Rats in M group underwent intraperitoneal injection of CH4 saline, and the other two groups simultaneously underwent intraperitoneal injection of normal saline. Then, the exercise capability of rats was tested through one-time exhaustive treadmill exercise except C group. Exercise time and body weight were recorded before and after one-time exhaustive exercise. After exhaustive exercise, the blood and gastrocnemius samples were collected from all rats to detect biochemical parameters in different methods.

Results

It was found that the treadmill running time was significantly longer in rats treated with CH4 saline. At the same time, CH4 saline reduced the elevation of LD and UN in blood caused by one-time exhaustive exercise. The low level of blood glucose induced by exhaustive exercise was also normalized by CH4 saline. Also CH4 saline lowered the level of CK in plasma. Furthermore, this research indicated that CH4 saline markedly increased the volume of T-AOC in plasma and alleviated the peak of TNF-α in both plasma and gastrocnemius. From H&E staining, CH4 saline effectively improved exercise-induced structural damage in gastrocnemius.

Conclusions

CH4 saline could enhance exercise capacity in male SD rats through increase of glucose aerobic oxidation, improvement of metabolic clearance and decrease of exhaustive exercise-induced gastrocnemius injury.  相似文献   
73.
74.
正Dear Editor,Canine coronavirus including canine coronavirus(CCoV)and canine respiratory coronavirus(CRCoV)have been recognized as pathogenic viruses to dogs worldwide,causing enteric and respiratory issues(Buonavoglia et al.,2006).Zoonotic transfer of the viruses from the animal kingdom to humans has been repeatedly observed over the past decade,  相似文献   
75.
Optimizing leaf shape is a major challenge in efforts to develop an ideal plant type. Cucumber leaf shapes are diverse; however, the molecular regulatory mechanisms underlying leaf shape formation are unknown. In this study, we obtained a round leaf mutant(rl) from an ethyl methanesulfonate-induced mutagenesis population. Genetic analysis revealed that a single recessive gene, rl, is responsible for this mutation. A modified Mut Map analysis combined linkage mapping identified a single nucleotide polymorphism within a candidate gene,Csa1 M537400, as the mutation underlying the trait.Csa1 M537400 encodes a PINOID kinase protein involved in auxin transport. Expression of Csa1 M537400 was significantly lower in the rl mutant than in wild type, and it displayed higher levels of IAA(indole-3-acetic acid) in several tissues. Treatment of wild-type plants with an auxin transport inhibitor induced the formation of round leaves,similar to those in the rl mutant. Altered expression patterns of several auxin-related genes in the rl mutant suggest that rl plays a key role in auxin biosynthesis,transport, and response in cucumber. These findings provide insight into the molecular mechanism underlying the regulation of auxin signaling pathways in cucumber,and will be valuable in the development of an ideal plant type.  相似文献   
76.
77.
Anodically electrodeposited amorphous molybdenum sulfide (AE‐MoSx) has attracted significant attention as a non‐noble metal electrocatalyst for its high activity toward the hydrogen evolution reaction (HER). The [Mo3S13]2? polymer‐based structure confers a high density of exposed sulfur moieties, widely regarded as the HER active sites. However, their intrinsic complexity conceals full understanding of their exact role in HER catalysis, hampering their full potential for water splitting applications. In this report, a unifying approach is adopted accounting for modifications in the inherent electrochemistry (EC), HER mechanism, and surface species to maximize the AE‐MoSx electroactivity over a broad pH region (0–10). Dramatic enhancements in HER performance by selective electrochemical cycling within reductive (overpotential shift, ηHER ≈ ?350 mV) and electro‐oxidative windows (ηHER ≈ ?290 mV) are accompanied by highly stable performance in mildly acidic electrolytes. Joint analysis of X‐ray photoelectron spectroscopy, Raman, and EC experiments corroborate the key role of bridging and terminal S ligands as active site generators at low pH, and reveal molybdenum oxysulfides (Mo5+OxSy) to be the most active HER moiety in AE‐MoSx in mildly acidic‐to‐neutral environments. These findings will be extremely beneficial for future tailoring of MoSx materials and their implementation in commercial electrolyzer technologies.  相似文献   
78.
7α‐Hydroxysteroid dehydrogenase (7α‐HSDH) is an NAD(P)H‐dependent oxidoreductase belonging to the short‐chain dehydrogenases/reductases. In vitro, 7α‐HSDH is involved in the efficient biotransformation of taurochenodeoxycholic acid (TCDCA) to tauroursodeoxycholic acid (TUDCA). In this study, a gene encoding novel 7α‐HSDH (named as St‐2‐1) from fecal samples of black bear was cloned and heterologously expressed in Escherichia coli. The protein has subunits of 28.3 kDa and a native size of 56.6 kDa, which suggested a homodimer. We studied the relevant properties of the enzyme, including the optimum pH, optimum temperature, thermal stability, activators, and inhibitors. Interestingly, the data showed that St‐2‐1 differs from the 7α‐HSDHs reported in the literature, as it functions under acidic conditions. The enzyme displayed its optimal activity at pH 5.5 (TCDCA). The acidophilic nature of 7α‐HSDH expands its application environment and the natural enzyme bank of HSDHs, providing a promising candidate enzyme for the biosynthesis of TUDCA or other related chemical entities.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号