首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28395篇
  免费   2596篇
  国内免费   3886篇
  2024年   107篇
  2023年   448篇
  2022年   952篇
  2021年   1589篇
  2020年   1113篇
  2019年   1409篇
  2018年   1282篇
  2017年   967篇
  2016年   1228篇
  2015年   1864篇
  2014年   2283篇
  2013年   2375篇
  2012年   2889篇
  2011年   2517篇
  2010年   1645篇
  2009年   1533篇
  2008年   1661篇
  2007年   1506篇
  2006年   1259篇
  2005年   1128篇
  2004年   896篇
  2003年   814篇
  2002年   670篇
  2001年   442篇
  2000年   360篇
  1999年   374篇
  1998年   253篇
  1997年   200篇
  1996年   191篇
  1995年   152篇
  1994年   133篇
  1993年   91篇
  1992年   96篇
  1991年   86篇
  1990年   69篇
  1989年   62篇
  1988年   54篇
  1987年   35篇
  1986年   34篇
  1985年   44篇
  1984年   13篇
  1983年   15篇
  1982年   12篇
  1981年   11篇
  1980年   3篇
  1979年   2篇
  1977年   2篇
  1969年   2篇
  1965年   1篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
241.
242.
Breast cancer is the second leading death cause of cancer death for all women. Previous study suggested that Protein Kinase D3 (PRKD3) was involved in breast cancer progression. In addition, the protein level of PRKD3 in triple‐negative breast adenocarcinoma was higher than that in normal breast tissue. However, the oncogenic mechanisms of PRKD3 in breast cancer is not fully investigated. Multi‐omic data showed that ERK1/c‐MYC axis was identified as a major pivot in PRKD3‐mediated downstream pathways. Our study provided the evidence to support that the PRKD3/ERK1/c‐MYC pathway play an important role in breast cancer progression. We found that knocking out PRKD3 by performing CRISPR/Cas9 genome engineering technology suppressed phosphorylation of both ERK1 and c‐MYC but did not down‐regulate ERK1/2 expression or phosphorylation of ERK2. The inhibition of ERK1 and c‐MYC phosphorylation further led to the lower protein level of c‐MYC and then reduced the expression of the c‐MYC target genes in breast cancer cells. We also found that loss of PRKD3 reduced the rate of the cell proliferation in vitro and tumour growth in vivo, whereas ectopic (over)expression of PRKD3, ERK1 or c‐MYC in the PRKD3‐knockout breast cells reverse the suppression of the cell proliferation and tumour growth. Collectively, our data strongly suggested that PRKD3 likely promote the cell proliferation in the breast cancer cells by activating ERK1‐c‐MYC axis.  相似文献   
243.
Allopurinol (ALP) attenuates oxidative stress and diabetic cardiomyopathy (DCM), but the mechanism is unclear. Activation of nuclear factor erythroid 2‐related factor 2 (Nrf2) following the disassociation with its repressor Keap1 under oxidative stress can maintain inner redox homeostasis and attenuate DCM with concomitant attenuation of autophagy. We postulated that ALP treatment may activate Nrf2 to mitigate autophagy over‐activation and consequently attenuate DCM. Streptozotocin‐induced type 1 diabetic rats were untreated or treated with ALP (100 mg/kg/d) for 4 weeks and terminated after heart function measurements by echocardiography and pressure‐volume conductance system. Cardiomyocyte H9C2 cells infected with Nrf2 siRNA or not were incubated with high glucose (HG, 25 mmol/L) concomitantly with ALP treatment. Cell viability, lactate dehydrogenase, 15‐F2t‐Isoprostane and superoxide dismutase (SOD) were measured with colorimetric enzyme‐linked immunosorbent assays. ROS, apoptosis, was assessed by dihydroethidium staining and TUNEL, respectively. The Western blot and qRT‐PCR were used to assess protein and mRNA variations. Diabetic rats showed significant reductions in heart rate (HR), left ventricular eject fraction (LVEF), stroke work (SW) and cardiac output (CO), left ventricular end‐systolic volume (LVVs) as compared to non‐diabetic control and ALP improved or normalized HR, LVEF, SW, CO and LVVs in diabetic rats (all P < .05). Hearts of diabetic rats displayed excessive oxidative stress manifested as increased levels of 15‐F2t‐Isoprostane and superoxide anion production, increased apoptotic cell death and cardiomyocytes autophagy that were concomitant with reduced expressions of Nrf2, heme oxygenase‐1 (HO‐1) and Keap1. ALP reverted all the above‐mentioned diabetes‐induced biochemical changes except that it did not affect the levels of Keap1. In vitro, ALP increased Nrf2 and reduced the hyperglycaemia‐induced increases of H9C2 cardiomyocyte hypertrophy, oxidative stress, apoptosis and autophagy, and enhanced cellular viability. Nrf2 gene silence cancelled these protective effects of ALP in H9C2 cells. Activation of Nrf2 subsequent to the suppression of Keap1 and the mitigation of autophagy over‐activation may represent major mechanisms whereby ALP attenuates DCM.  相似文献   
244.
Despite the widespread use of antiplatelets and anticoagulants, women with antiphospholipid syndrome (APS) may face pregnancy complications associated with placental dysplasia. Neutrophil extracellular traps (NETs) are involved in the pathogenesis of many autoimmune diseases, including vascular APS; however, their role in obstetric APS is unclear. Herein, we investigated the role of NETs by quantifying cell‐free DNA and NET marker levels. Live‐cell imaging was used to visualize NET formation, and MAPK signalling pathway proteins were analysed. Cell migration, invasion and tube formation assays were performed to observe the effects of NETs on trophoblasts and human umbilical vein endothelial cells (HUVECs). The concentrations of cell‐free DNA and NETs in sera of pregnant patients with APS were elevated compared with that of healthy controls (HCs) matched to gestational week. APS neutrophils were predisposed to spontaneous NET release and IgG purified from the patients (APS‐IgG) induced neutrophils from HCs to release NETs. Additionally, APS‐IgG NET induction was abolished with inhibitors of reactive oxygen species, AKT, p38 MAPK and ERK1/2. Moreover, NETs were detrimental to trophoblasts and HUVECs. In summary, APS‐IgG‐induced NET formation deserves further investigation as a potential novel therapeutic target in obstetrical APS.  相似文献   
245.
m6A modification is the most prevalent RNA modification in eukaryotes. As the critical N6-methyladenosine (m6A) methyltransferase, the roles of methyltransferase like 3 (METTL3) in colorectal cancer (CRC) are controversial. Here, we confirmed that METTL3, a critical m6A methyltransferase, could facilitate CRC progression in vitro and in vivo. Further, we found METTL3 promoted CRC cell proliferation by methylating the m6A site in 3′-untranslated region (UTR) of CCNE1 mRNA to stabilize it. Moreover, we found butyrate, a classical intestinal microbial metabolite, could down-regulate the expression of METTL3 and related cyclin E1 to inhibit CRC development. METTL3 promotes CRC proliferation by stabilizing CCNE1 mRNA in an m6A-dependent manner, representing a promising therapeutic strategy for the treatment of CRC.  相似文献   
246.
In the ageing skeleton, the balance of bone reconstruction could commonly be broken by the increasing of bone resorption and decreasing of bone formation. Consequently, the bone resorption gradually occupies a dominant status. During this imbalance process, osteoclast is unique cell linage act the bone resorptive biological activity, which is a highly differentiated ultimate cell derived from monocyte/macrophage. The erosive function of osteoclasts is that they have to adhere the bone matrix and migrate along it, in which adhesive cytoskeleton recombination of osteoclast is essential. In that, the podosome is a membrane binding microdomain organelle, based on dynamic actin, which forms a cytoskeleton superstructure connected with the plasma membrane. Otherwise, as the main adhesive protein, integrin regulates the formation of podosome and cytoskeleton, which collaborates with the various molecules including: c-Cbl, p130Cas, c-Src and Pyk2, through several signalling cascades cross talking, including: M-CSF and RANKL. In our current study, we discuss the role of integrin and associated molecules in osteoclastogenesis cytoskeletal, especially podosomes, regulation and relevant signalling cascades cross talking.  相似文献   
247.
Pathogenesis and treatment for diabetic neuropathy are still complex. A deficit of neurotrophic factors affecting Schwann cells is a very important cause of diabetic neuropathy. Neuritin is a newly discovered potential neurotrophic factor. In this study, we explored the effect of exogenous neuritin on survivability and functions of diabetic Schwann cells of rats with experimental diabetic neuropathy. Diabetic neuropathy was induced in rats. 12‐week diabetic rats contrasted with non‐diabetic normal rats had decreased levels of serum neuritin and slowed nerve conduction velocities (NCVs). Schwann cells isolated from these diabetic rats and cultured in high glucose showed reduced cell neuritin mRNA and protein and supernatant neuritin protein, increased apoptosis rates, increased caspase‐3 activities and progressively reduced viability. In contrast, exogenous neuritin treatment reduced apoptosis and improved viability, with elevated Bcl‐2 levels (not Bax) and decreased caspase‐3 activities. Co‐cultured with diabetic Schwann cells pre‐treated with exogenous neuritin in high glucose media, and diabetic DRG neurons showed lessened decreased neurite outgrowth and supernatant NGF concentration occurring in co‐culture of diabetic cells. Exogenous neuritin treatment ameliorated survivability and functions of diabetic Schwann cells of rats with diabetic neuropathy. Our study may provide a new mechanism and potential treatment for diabetic neuropathy.  相似文献   
248.
A growing number of studies recognize that long non‐coding RNAs (lncRNAs) are essential to mediate multiple tumorigenic processes, including hepatic tumorigenesis. However, the pathological mechanism of lncRNA‐regulated liver cancer cell growth remains poorly understood. In this study, we identified a novel function lncRNA, named polo‐like kinase 4 associated lncRNA (lncRNA PLK4, GenBank Accession No. RP11‐50D9.3), whose expression was dramatically down‐regulated in hepatocellular carcinoma (HCC) tissues and cells. Interestingly, talazoparib, a novel and highly potent poly‐ADP‐ribose polymerase 1/2 (PARP1/2) inhibitor, could increase lncRNA PLK4 expression in HepG2 cells. Importantly, we showed that talazoparib‐induced lncRNA PLK4 could function as a tumour suppressor gene by Yes‐associated protein (YAP) inactivation and induction of cellular senescence to inhibit liver cancer cell viability and growth. In summary, our findings reveal the molecular mechanism of talazoparib‐induced anti‐tumor effect, and suggest a potential clinical use of talazoparib‐targeted lncRNA PLK4/YAP‐dependent cellular senescence for the treatment of HCC.  相似文献   
249.
The current study was designed to explore the role and underlying mechanism of lncRNA taurine up-regulated gene 1 (TUG1) in cardiac hypertrophy. Mice were treated by transverse aortic constriction (TAC) surgery to induce cardiac hypertrophy, and cardiomyocytes were treated by phenylephrine (PE) to induce hypertrophic phenotype. Haematoxylin-eosin (HE), wheat germ agglutinin (WGA) and immunofluorescence (IF) were used to examine morphological alterations. Real-time PCR, Western blots and IF staining were used to detect the expression of RNAs and proteins. Luciferase assay and RNA pull-down assay were used to verify the interaction. It is revealed that TUG1 was up-regulated in the hearts of mice treated by TAC surgery and in PE-induced cardiomyocytes. Functionally, overexpression of TUG1 alleviated cardiac hypertrophy both in vivo and in vitro. Mechanically, TUG1 sponged and sequestered miR-34a to increase the Dickkopf 1 (DKK1) level, which eventually inhibited the activation of Wnt/β-catenin signalling. In conclusion, the current study reported the protective role and regulatory mechanism of TUG1 in cardiac hypertrophy and suggested that TUG1 may serve as a novel molecular target for treating cardiac hypertrophy.  相似文献   
250.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号