首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76582篇
  免费   19042篇
  国内免费   5453篇
  2024年   125篇
  2023年   701篇
  2022年   1610篇
  2021年   3079篇
  2020年   3878篇
  2019年   5885篇
  2018年   5801篇
  2017年   5600篇
  2016年   6160篇
  2015年   7119篇
  2014年   7467篇
  2013年   8192篇
  2012年   6680篇
  2011年   5930篇
  2010年   5730篇
  2009年   4256篇
  2008年   3457篇
  2007年   2761篇
  2006年   2442篇
  2005年   2211篇
  2004年   1866篇
  2003年   1687篇
  2002年   1520篇
  2001年   1079篇
  2000年   938篇
  1999年   834篇
  1998年   489篇
  1997年   390篇
  1996年   400篇
  1995年   334篇
  1994年   297篇
  1993年   208篇
  1992年   263篇
  1991年   250篇
  1990年   198篇
  1989年   172篇
  1988年   156篇
  1987年   138篇
  1986年   117篇
  1985年   135篇
  1984年   64篇
  1983年   67篇
  1982年   39篇
  1981年   38篇
  1980年   27篇
  1979年   37篇
  1978年   28篇
  1977年   22篇
  1975年   29篇
  1974年   22篇
排序方式: 共有10000条查询结果,搜索用时 73 毫秒
131.
Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait‐space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables.  相似文献   
132.
133.
134.
135.
How morphology changes with size can have profound effects on the life history and ecology of an animal. For apex predators that can impact higher level ecosystem processes, such changes may have consequences for other species. Tiger sharks (Galeocerdo cuvier) are an apex predator in tropical seas, and, as adults, are highly migratory. However, little is known about ontogenetic changes in their body form, especially in relation to two aspects of shape that influence locomotion (caudal fin) and feeding (head shape). We captured digital images of the heads and caudal fins of live tiger sharks from Southern Florida and the Bahamas ranging in body size (hence age), and quantified shape of each using elliptical Fourier analysis. This revealed changes in the shape of the head and caudal fin of tiger sharks across ontogeny. Smaller juvenile tiger sharks show an asymmetrical tail with the dorsal (upper) lobe being substantially larger than the ventral (lower) lobe, and transition to more symmetrical tail in larger adults, although the upper lobe remains relatively larger in adults. The heads of juvenile tiger sharks are more conical, which transition to relatively broader heads over ontogeny. We interpret these changes as a result of two ecological transitions. First, adult tiger sharks can undertake extensive migrations and a more symmetrical tail could be more efficient for swimming longer distances, although we did not test this possibility. Second, adult tiger sharks expand their diet to consume larger and more diverse prey with age (turtles, mammals, and elasmobranchs), which requires substantially greater bite area and force to process. In contrast, juvenile tiger sharks consume smaller prey, such as fishes, crustaceans, and invertebrates. Our data reveal significant morphological shifts in an apex predator, which could have effects for other species that tiger sharks consume and interact with. J. Morphol. 277:556–564, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
136.
137.
The rostrum of most ziphiids (beaked whales) displays bizarre swollen regions, accompanied with extreme hypermineralisation and an alteration of the collagenous mesh of the bone. The functional significance of this specialization remains obscure. With the voluminous and dense hemispheric excrescence protruding from the premaxillae, the recently described fossil ziphiid Globicetus hiberus is the most spectacular case. This study describes the histological structure and interprets the growth pattern of this unique feature. Histologically, the prominence in Globicetus is made up of an atypical fibro‐lamellar complex displaying an irregular laminar organization and extreme compactness (osteosclerosis). Its development is suggested to have resulted from a protraction of periosteal accretion over the premaxillae, long after the end of somatic growth. Complex shifts in the geometry of this tissue are likely to have occurred during its accretion and no indication of Haversian remodeling could be found. X‐ray diffraction and Raman spectroscopy indicate that the bone matrix in the premaxillary prominence of Globicetus closely resembles that of the rostrum of the extant beaked whale Mesoplodon densirostris: apatite crystals are of common size and strongly oriented, but the collagenous meshwork within bone matrix seems to be extremely sparse. These morphological and structural data are discussed in the light of functional interpretations proposed for the highly unusual and diverse ziphiid rostrum. J. Morphol. 277:1292–1308, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
138.
139.
  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号