首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91990篇
  免费   20176篇
  国内免费   7080篇
  119246篇
  2024年   211篇
  2023年   986篇
  2022年   2208篇
  2021年   4064篇
  2020年   4419篇
  2019年   6477篇
  2018年   6444篇
  2017年   5926篇
  2016年   6715篇
  2015年   8017篇
  2014年   8543篇
  2013年   9260篇
  2012年   8110篇
  2011年   7079篇
  2010年   6555篇
  2009年   4891篇
  2008年   4309篇
  2007年   3580篇
  2006年   3168篇
  2005年   2792篇
  2004年   2297篇
  2003年   2061篇
  2002年   1771篇
  2001年   1426篇
  2000年   1178篇
  1999年   1159篇
  1998年   644篇
  1997年   607篇
  1996年   580篇
  1995年   512篇
  1994年   504篇
  1993年   381篇
  1992年   445篇
  1991年   346篇
  1990年   307篇
  1989年   282篇
  1988年   202篇
  1987年   151篇
  1986年   149篇
  1985年   142篇
  1984年   80篇
  1983年   78篇
  1982年   53篇
  1981年   29篇
  1980年   25篇
  1979年   24篇
  1977年   8篇
  1976年   7篇
  1975年   5篇
  1971年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
21.
A tip-focused Ca^2+ gradient is tightly coupled to polarized pollen tube growth, and tip-localized influxes of extracellular Ca^2+ are required for this process. However the molecular identity and regulation of the potential Ca^2+ channels remains elusive. The present study has implicated CNGC18 (cyclic nucleotide-gated channel 18) in polarized pollen tube growth, because its overexpression induced wider and shorter pollen tubes. Moreover, CNGC18 overexpression induced depolarization of pollen tube growth was suppressed by lower extracellular calcium ([Ca^2+]ex). CNGC18-yellow fluorescence protein (YFP) was preferentially localized to the apparent post-Golgi vesicles and the plasma membrane (PM) in the apex of pollen tubes. The PM localization was affected by tip-localized ROP1 signaling. Expression of wild type ROP1 or an active form of ROP1 enhanced CNGC18-YFP localization to the apical region of the PM, whereas expression of RopGAP1 (a ROP1 deactivator) blocked the PM localization. These results support a role for PM-Iocalized CNGC18 in the regulation of polarized pollen tube growth through its potential function in the modulation of calcium influxes.  相似文献   
22.
Resolving the conflicts between biodiversity conservation and socioeconomic development is a global pursuit for the long-run prospects of the human species. Based on Wenchuan County, a typical county in southwestern China, a group of 20 indicators quantifying regional biodiversity and socioeconomic development was established to classify and evaluate the county area spatially. A fuzzy c-means clustering (FCM) algorithm was used as the classification method. Three indices including BD, DL and DR characterizing the value of biodiversity, the level and rate of socioeconomic development of the delineated regions were formulated. The results indicated that Wenchuan County was optimally classified into 4 types of regions (region I to IV). The area percentages of the regions vary widely from 4.3 to 65.7%. The sequences of the regions on biodiversity, socioeconomic development level, and socioeconomic development rate were, respectively, IV > II > III > I, I > III > II > IV and III >I >II >IV. The spatial strategy on coordinating biodiversity conservation and regional development is to develop mainly from the east(I, II, III) and to conserve mainly in the west(IV). Eco-industry, such as eco-tourism and eco-agriculture, need to be emphasized in the process of regional development. The quantitative methods used here may have a wide applicability.  相似文献   
23.
24.
Abstract. Objectives: The ADAMs (a disintegrin and metalloproteinase) enzymes compose a family of membrane‐bound proteins characterized by their multi‐domain structure and ADAM‐12 expression is elevated in human non‐small cell lung cancers. The aim of this study was to investigate the roles played by ADAM‐12 in critical steps of bronchial cell transformation during carcinogenesis. Materials and methods: To assess the role of ADAM‐12 in tumorigenicity, BEAS‐2B cells were transfected with a plasmid encoding human full‐length ADAM‐12 cDNA, and then the effects of ADAM‐12 overexpression on cell behaviour were explored. Treatment of clones with heparin‐binding epidermal growth factor (EGF)‐like growth factor (HB‐EGF) neutralizing antibodies as well as an EGFR inhibitor allowed the dissection of mechanisms regulating cell proliferation and apoptosis. Results: Overexpression of ADAM‐12 in BEAS‐2B cells promoted cell proliferation. ADAM‐12 overexpressing clones produced higher quantities of HB‐EGF in their culture medium which may rely on membrane‐bound HB‐EGF shedding by ADAM‐12. Targeting HB‐EGF activity with a neutralizing antibody abrogated enhanced cell proliferation in the ADAM‐12 overexpressing clones. In sharp contrast, targeting of amphiregulin, EGF or transforming growth factor‐α failed to influence cell proliferation; moreover, ADAM‐12 transfectants were resistant to etoposide‐induced apoptosis and the use of a neutralizing antibody against HB‐EGF activity restored rates of apoptosis to be similar to controls.Conclusions: ADAM‐12 contributes to enhancing HB‐EGF shedding from plasma membranes leading to increased cell proliferation and reduced apoptosis in this bronchial epithelial cell line.  相似文献   
25.
Beyond its role as an electron acceptor in aerobic respiration, oxygen is also a key effector of many developmental events. The oxygen‐sensing machinery and the very fabric of cell identity and function have been shown to be deeply intertwined. Here we take a first look at how oxygen might lie at the crossroads of at least two of the major molecular pathways that shape pancreatic development. Based on recent evidence and a thorough review of the literature, we present a theoretical model whereby evolving oxygen tensions might choreograph to a large extent the sequence of molecular events resulting in the development of the organ. In particular, we propose that lower oxygenation prior to the expansion of the vasculature may favour HIF (hypoxia inducible factor)‐mediated activation of Notch and repression of Wnt/β‐catenin signalling, limiting endocrine cell differentiation. With the development of vasculature and improved oxygen delivery to the developing organ, HIF‐mediated support for Notch signalling may decline while the β‐catenin‐directed Wnt signalling is favoured, which would support endocrine cell differentiation and perhaps exocrine cell proliferation/differentiation.  相似文献   
26.
Pycnogenol® (PYC), a patented combination of bioflavonoids extracted from the bark of French maritime pine (Pinus maritima), scavenges free radicals and promotes cellular health. The protective capacity of PYC against ethanol toxicity of neurons has not previously been explored. The present study demonstrates that in postnatal day 9 (P9) rat cerebellar granule cells the antioxidants vitamin E (VE) and PYC (1) dose dependently block cell death following 400, 800, and 1600 mg/dL ethanol exposure (2) inhibit the ethanol‐induced activation of caspase‐3 in the same model system; and (3) reduce neuronal membrane disruption as assayed by phosphatidylserine translocation to the cell surface. These results suggest that both PYC and VE have the potential to act as therapeutic agents, antagonizing the induction of neuronal cell death by ethanol exposure. © 2004 Wiley Periodicals, Inc. J Neurobiol 59: 261–271, 2004  相似文献   
27.
The heritability of eating behavior and body weight–related traits in Asian populations has not been reported. The purpose of this study was to estimate the heritability of eating behavior and the body weight–related traits of current weight and self‐reported past weight among twins and their families. Study subjects were 2,144 Korean, adult, same‐sex twins and their families at the ages between 20 and 65 years (443 monozygotic (MZ) and 124 dizygotic (DZ) twin pairs, and 1,010 individuals of their family). The Dutch Eating Behavior Questionnaire (DEBQ) was used to assess three eating behavior subscales measuring restraint, emotional eating, and external eating. A variance component approach was used to estimate heritability. After consideration of shared environmental effects and adjustment for age and sex effects, the heritability estimates ± s.e. among twins and their family members were 0.31 ± 0.036 for restraint, 0.25 ± 0.098 for emotional eating, 0.25 ± 0.060 for external eating, 0.77 ± 0.032 for measured current body weight, and 0.70 ± 0.051 for self‐reported weight at 20 years old. The three DEBQ subscales were associated with all weight related traits after adjustment for age and sex. These results suggest eating behaviors and weight‐related traits have a genetic influence, and eating behaviors are associated with obesity indexes. Our findings from Korean twin family were similar to those reported in Western populations.  相似文献   
28.
The balance between mitochondrial fission and fusion is disrupted during mitosis, but the mechanism governing this phenomenon in plant cells remains enigmatic. Here, we used mitochondrial matrix‐localized Kaede protein (mt‐Kaede) to analyze the dynamics of mitochondrial fission in BY‐2 suspension cells. Analysis of the photoactivatable fluorescence of mt‐Kaede suggested that the fission process is dominant during mitosis. This finding was confirmed by an electron microscopic analysis of the size distribution of mitochondria in BY‐2 suspension cells at various stages. Cellular proteins interacting with Myc‐tagged dynamin‐related protein 3A/3B (AtDRP3A and AtDRP3B) were immunoprecipitated with anti‐Myc antibody‐conjugated beads and subsequently identified by microcapillary liquid chromatography–quadrupole time‐of‐flight mass spectrometry (CapLC Q‐TOF) MS/MS. The identified proteins were broadly associated with cytoskeletal (microtubular), phosphorylation, or ubiquitination functions. Mitotic phosphorylation of AtDRP3A/AtDRP3B and mitochondrial fission at metaphase were inhibited by treatment of the cells with a CdkB/cyclin B inhibitor or a serine/threonine protein kinase inhibitor. The fate of AtDRP3A/3B during the cell cycle was followed by time‐lapse imaging of the fluorescence of Dendra2‐tagged AtDRP3A/3B after green‐to‐red photoconversion; this experiment showed that AtDRP3A/3B is partially degraded during interphase. Additionally, we found that microtubules are involved in mitochondrial fission during mitosis, and that mitochondria movement to daughter cell was limited as early as metaphase. Taken together, these findings suggest that mitotic phosphorylation of AtDRP3A/3B promotes mitochondrial fission during plant cell mitosis, and that AtDRP3A/3B is partially degraded at interphase, providing mechanistic insight into the mitochondrial morphological changes associated with cell‐cycle transitions in BY‐2 suspension cells.  相似文献   
29.
Ischemic stroke is a major composition of cerebrovascular disease, seriously threatening to human health in the world. Activin A (ActA), belonging to transforming growth factor-beta (TGF-β) super family, plays an important role in the hypoxic-ischemic brain injury through ActA/Smads pathway. While as an essential phosphorylation assistor in TGF-β signaling, the functions and mechanisms of smad anchor for receptor activation (SARA) in ischemic brain injury remain poorly understood. To solve this problem and explore the pathological processes of ischemic stroke, we used an Oxygen–Glucose deprivation (OGD) model in nerve growth factor-induced differentiated rattus PC12 pheochromocytoma cells and down regulated the expressions of SARA by RNA interference technology. Our results showed that the repression of SARA before OGD exposure reduced the expressions of Smad2, 3, 4 mRNA and the phosphorylation rate of Smad2 protein, but it did not affect the mRNA expressions of Smad7. After OGD treatment, ActA/Smads pathway was activated and the expression of SARA in the SARA pre-repression group was significantly up-regulated. The pre-repression of SARA increased the sensitivities of nerve-like cells to OGD damage. Moreover, the mRNA expression of Smad7 which was supposed to participate in the negative feedback of ActA/Smads pathway was also elevated due to OGD injury. Taken together, these results suggest a positive role of SARA in assisting the phosphorylation of Smad2 and maintaining the neuron protective effect of ActA/Smads pathway.  相似文献   
30.
The melanogenic actions of the melanocortins are mediated by the melanocortin‐1 receptor (MC1R). MC1R is a member of the G‐protein‐coupled receptors (GPCR) superfamily expressed in cutaneous and hair follicle melanocytes. Activation of MC1R by adrenocorticotrophin or α‐melanocyte stimulating hormone is positively coupled to the cAMP signaling pathway and leads to a stimulation of melanogenesis and a switch from the synthesis of pheomelanins to the production of eumelanic pigments. The functional behavior of the MC1R agrees with emerging concepts in GPCR signaling including dimerization, coupling to more than one signaling pathway and a high agonist‐independent constitutive activity accounting for inverse agonism phenomena. In addition, MC1R displays unique properties such as an unusually high number of natural variants often associated with clearly visible phenotypes and the occurrence of endogenous peptide antagonists. Therefore MC1R is an ideal model to study GPCR function. Here we review our current knowledge of MC1R structure and function, with emphasis on information gathered from the analysis of natural variants. We also discuss recent data on the regulation of MC1R function by paracrine and endocrine factors and by external stimuli such as ultraviolet light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号