首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133608篇
  免费   22609篇
  国内免费   9864篇
  166081篇
  2024年   288篇
  2023年   1527篇
  2022年   3473篇
  2021年   5998篇
  2020年   5635篇
  2019年   8001篇
  2018年   7882篇
  2017年   7056篇
  2016年   8362篇
  2015年   10553篇
  2014年   11526篇
  2013年   12516篇
  2012年   12085篇
  2011年   10622篇
  2010年   8570篇
  2009年   6916篇
  2008年   6570篇
  2007年   5630篇
  2006年   4815篇
  2005年   4202篇
  2004年   3484篇
  2003年   3075篇
  2002年   2668篇
  2001年   2092篇
  2000年   1910篇
  1999年   1744篇
  1998年   1019篇
  1997年   923篇
  1996年   888篇
  1995年   794篇
  1994年   705篇
  1993年   487篇
  1992年   700篇
  1991年   544篇
  1990年   499篇
  1989年   357篇
  1988年   311篇
  1987年   275篇
  1986年   215篇
  1985年   242篇
  1984年   128篇
  1983年   135篇
  1982年   86篇
  1981年   68篇
  1980年   42篇
  1979年   67篇
  1977年   34篇
  1976年   33篇
  1974年   42篇
  1973年   34篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
61.
Phenol red is widely used in cell culture as a pH indicator. Recently, it also has been reported to have estrogen-like bioactivity and be capable of promoting cell proliferation in different cell lines. However, the effect of phenol red on primary neuronal culture has never been investigated. By using patch clamp technique, we demonstrated that hippocampal pyramidal neurons cultured in neurobasal medium containing no phenol red had large depolarization-associated epileptiform bursting activities, which were rarely seen in neurons cultured in phenol red-containing medium. Further experiment data indicate that the suppressive effect of the phenol red on the abnormal epileptiform burst neuronal activities was U-shape dose related, with the most effective concentration at 28 µM. In addition, this concentration related inhibitory effect of phenol red on the epileptiform neuronal discharges was mimicked by 17-β-estradiol, an estrogen receptor agonist, and inhibited by ICI-182,780, an estrogen receptor antagonist. Our results suggest that estrogen receptor activation by phenol red in the culture medium prevents formation of abnormal, epileptiform burst activity. These studies highlight the importance of phenol red as estrogen receptor stimulator and cautions of careful use of phenol red in cell culture media.  相似文献   
62.
BRL-3A rat liver cells synthesize mature 7484-dalton rat insulin-like growth factor II (rIGF-II) as a approximately 22-kDa precursor, presumably prepro-rIGF-II. In the present study, we have biosynthetically labeled intact BRL-3A cells with [35S]cysteine and immunoprecipitated cell lysates and media with antisera to rIGF-II. A approximately 20-kDa protein was identified in immunoprecipitates of cell lysates having properties consistent with pro-rIGF-II. The approximately 20-kDa protein is precipitated by immune sera but not by nonimmune serum. Its immunoprecipitation is specifically inhibited by unlabeled rIGF-II but not by insulin. It is not precipitated from labeled lysates of a subclone of BRL-3A cells (BRL-3A2) that does not synthesize rIGF-II. The approximately 20-kDa protein is rapidly labeled intracellularly (10 min) but is not detected in BRL-3A media. In pulse-chase experiments, radioactivity in the approximately 20-kDa protein disappears during the chase and appears, at later times, in specifically immunoprecipitated approximately 19-, approximately 10-, approximately 8-, and approximately 7-kDa proteins in media and, to a limited extent, intracellularly. A protein with electrophoretic mobility identical to that of the approximately 20-kDa protein observed in cell lysates is immunoprecipitated from 35S-proteins whose synthesis is directed by BRL-3A RNA in a reticulocyte lysate cell-free translation system supplemented with microsomal membranes, and presumably arises by cotranslational removal of the signal peptide from approximately 22-kDa prepro-rIGF-II. Processing of the approximately 20-kDa protein in intact BRL-3A cells to intermediate and mature rIGF-II species appears to occur at the time of secretion and/or shortly thereafter, with the different forms appearing at approximately the same time.  相似文献   
63.
The nocturnally active weakly electric fish Gnathonemus petersii is known to employ active electrolocation for the detection of objects and for orientation in its environment. The fish emits pulse‐type electric signals with an electric organ and perceives these signals with more than 3,000 epidermal electroreceptor organs, the mormyromasts, which are distributed over the animal's skin surface. In this study, we measured the metric dimensions of the mormyromasts from different body regions to find structural and functional specialization of the various body parts. We focused on the two foveal regions of G. petersii, which are located at the elongated and movable chin (the Schnauzenorgan; SO) and at the nasal region (NR), the skin region between the mouth and the nares. These two foveal regions were compared to the dorsal part (back) of the fish, which contains typical nonfoveal mormyromasts. While the gross anatomy of the mormyromasts from all skin regions is similar, the metric dimensions of the main substructures differed. The mormyromasts at the SO are the smallest and contain the smallest receptor cells. In addition, the number of receptor cells per organ is lowest at the SO. In contrast, at the back the biggest receptor organs with the highest amount of receptor cells per organ occur. The mormyromasts at the NR are in several respects intermediate between those from the back and the SO. However, mormyromasts at the NR are longer than those at all other skin regions, the canal leading from the receptor pore to the inner chambers were the longest and the overlaying epidermal layers are the thickest. These results show that mormyromasts and the epidermis they are embedded in at both foveal regions differ specifically from those found on the rest of the body. The morphological specializations lead to functional specialization of the two foveae. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
64.
doi:10.1111/j.1741‐2358.2009.00333.x
Effect of microwave treatment on the shear bond strength of different types of commercial teeth to acrylic resin Objective: The purpose of this study was to verify the effect of microwave treatment on the shear bond strength of commercial types of teeth to acrylic resin, when the glossy ridge laps were unmodified (groups 1 and 5), bur abraded (groups 2 and 6), bur grooved (groups 3 and 7) or etched by monomer (groups 4 and 8). Background: Controversial findings have shown that mechanical or chemical changes in ridge‐lap surface of the tooth increase or decrease the bond strength between tooth and acrylic resin, and the microwave disinfection may cause different changes on this bond strength. Materials and methods: Eighty specimens (n = 10) were made with the acrylic resin bonded to tooth glossy ridge lap, polymerised in water at 74°C for 9 h, and deflasked after flask cooling. Specimens of the groups 5, 6, 7 and 8 were individually immersed in 150 ml of water and submitted to microwave treatment in an oven at 650 W for 3 min. Control specimens (groups 1, 2, 3 and 4) were not microwave treated. Shear bond strength test was performed in an Instron machine with a cross‐speed of 1 mm/min. Collected data were submitted to anova and Tukey’s test (α = 0.05). Results: Microwave treatment decreased the shear bond strength values of the tooth/resin bond. In the microwaved and non‐microwaved procedures, mechanical retention improved the shear bond strength when compared with the control and monomer treatments. Conclusion: Shear bond strength of the tooth/resin bond was influenced by the microwave treatment and different commercial teeth association, and was lower for the Biotone tooth.  相似文献   
65.
Acidic lipase finds its commercial values in medical applications and bioremediation of food wastes. In this work, approaches for rapid screening of lipase-producing bacteria were developed and the feasibility assessment of the screening methods was performed. From food waste samples, the proposed screening procedures allowed isolation of sixteen pure bacterial strains expressing higher lipase activity at acidic pH (pH 6.0) than at alkaline pH (pH 9.0). To enhance the accuracy of lipase activity determination under acidic conditions, a novel assay procedure was also developed by deactivating lipase activity by microwave treatment prior to back titration. This additional step could minimize interferences arising from residual lipase activity during conventional direct back-titration methods in measuring lipase activity at acidic pH. Using the four strategies proposed in this work, the best acidic-lipase-producing isolate was obtained by strategy C (SSC) and was identified as Aeromonas sp. C14, displaying an optimal lipase activity of 0.7 U/ml at an acidic pH of 6.0.  相似文献   
66.
The phorbol myristate acetate (PMA) stimulated nutrophil respiratory burst has been considered to simply involve the activation of protein kinase C (PKC). However, the PLD activity was also increased by 10‐fold in human neutrophils stimulated with 100 nM PMA. Unexpectedly, U73122, an inhibitor of phospholipase C, was found to significantly inhibit PMA‐stimulated respiratory burst in human neutrophils. U73122 at the concentrations, which were sufficient to inhibit the respiratory burst completely, caused partial inhibition of the PLD activity but no inhibition on PKC translocation and activation, suggesting that PLD activity is also required in PMA‐stimulated respiratory burst. Using 1‐butanol, a PLD substrate, to block phosphatidic acid (PA) generation, the PMA‐stimulated neutrophil respiratory burst was also partially inhibited, further indicating that PLD activation, possibly its hydrolytic product PA and diacylglycerol (DAG), is involved in PMA‐stimulated respiratory burst. Since GF109203X, an inhibitor of PKC that could completely inhibit the respiratory burst in PMA‐stimulated neutrophils, also caused certain suppression of PLD activation, it may suggest that PLD activation in PMA‐stimulated neutrophils might be, to some extent, PKC dependent. To further study whether PLD contributes to the PMA stimulated respiratory burst through itself or its hydrolytic product, 1,2‐dioctanoyl‐sn‐glycerol, an analogue of DAG , was used to prime cells at low concentration, and it reversed the inhibition of PMA‐stimulated respiratory burst by U73122. The results indicate that U73122 may act as an inhibitor of PLD, and PLD activation is required in PMA‐stimulated respiratory burst.  相似文献   
67.
68.
69.
Corticosterone, the major stress hormone, plays an important role in regulating neuronal functions of the limbic system, although the cellular targets and molecular mechanisms of corticosteroid signaling are largely unknown. Here we show that a short treatment of corticosterone significantly increases α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission and AMPAR membrane trafficking in pyramidal neurons of prefrontal cortex, a key region involved in cognition and emotion. This enhancing effect of corticosterone is through a mechanism dependent on Rab4, the small GTPase-controlling receptor recycling between early endosome and plasma membrane. Guanosine nucleotide dissociation inhibitor (GDI), which regulates the cycle of Rab proteins between membrane and cytosol, forms an increased complex with Rab4 after corticosterone treatment. Corticosterone also triggers an increased GDI phosphorylation at Ser-213 by the serum- and glucocorticoid-inducible kinase (SGK). Moreover, AMPAR synaptic currents and surface expression and their regulation by corticosterone are altered by mutating Ser-213 on GDI. These results suggest that corticosterone, via SGK phosphorylation of GDI at Ser-213, increases the formation of GDI-Rab4 complex, facilitating the functional cycle of Rab4 and Rab4-mediated recycling of AMPARs to the synaptic membrane. It provides a potential mechanism underlying the role of corticosteroid stress hormone in up-regulating excitatory synaptic efficacy in cortical neurons.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号