首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59126篇
  免费   17982篇
  国内免费   4413篇
  2024年   86篇
  2023年   499篇
  2022年   991篇
  2021年   2329篇
  2020年   3377篇
  2019年   5186篇
  2018年   5171篇
  2017年   5092篇
  2016年   5417篇
  2015年   6100篇
  2014年   6237篇
  2013年   6861篇
  2012年   5169篇
  2011年   4448篇
  2010年   4862篇
  2009年   3554篇
  2008年   2634篇
  2007年   2054篇
  2006年   1729篇
  2005年   1609篇
  2004年   1340篇
  2003年   1257篇
  2002年   1064篇
  2001年   868篇
  2000年   648篇
  1999年   630篇
  1998年   337篇
  1997年   267篇
  1996年   247篇
  1995年   213篇
  1994年   205篇
  1993年   134篇
  1992年   172篇
  1991年   132篇
  1990年   105篇
  1989年   101篇
  1988年   81篇
  1987年   60篇
  1986年   57篇
  1985年   70篇
  1984年   22篇
  1983年   25篇
  1982年   24篇
  1981年   14篇
  1980年   10篇
  1979年   7篇
  1977年   3篇
  1975年   3篇
  1969年   3篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
991.
The pulse of the tree (diurnal cycle of stem radius fluctuations) has been widely studied as a way of analyzing tree responses to the environment, including the phenotypic plasticity of tree–water relationships in particular. However, the genetic basis of this daily phenotype and its interplay with the environment remain largely unexplored. We characterized the genetic and environmental determinants of this response, by monitoring daily stem radius fluctuation (dSRF) on 210 trees from a Eucalyptus urophylla × E. grandis full‐sib family over 2 years. The dSRF signal was broken down into hydraulic capacitance, assessed as the daily amplitude of shrinkage (DA), and net growth, estimated as the change in maximum radius between two consecutive days (ΔR). The environmental determinants of these two traits were clearly different: DA was positively correlated with atmospheric variables relating to water demand, while ΔR was associated with soil water content. The heritability for these two traits ranged from low to moderate over time, revealing a time‐dependent or environment‐dependent complex genetic determinism. We identified 686 and 384 daily quantitative trait loci (QTL) representing 32 and 31 QTL regions for DA and ΔR, respectively. The identification of gene networks underlying the 27 major genomics regions for both traits generated additional hypotheses concerning the biological mechanisms involved in response to water demand and supply. This study highlights that environmentally induced changes in daily stem radius fluctuation are genetically controlled in trees and suggests that these daily responses integrated over time shape the genetic architecture of mature traits.  相似文献   
992.
993.
Traditional genetic studies focus on identifying genetic variants associated with the mean difference in a quantitative trait. Because genetic variants also influence phenotypic variation via heterogeneity, we conducted a variance‐heterogeneity genome‐wide association study to examine the contribution of variance heterogeneity to oil‐related quantitative traits. We identified 79 unique variance‐controlling single nucleotide polymorphisms (vSNPs) from the sequences of 77 candidate variance‐heterogeneity genes for 21 oil‐related traits using the Levene test (P < 1.0 × 10?5). About 30% of the candidate genes encode enzymes that work in lipid metabolic pathways, most of which define clear expression variance quantitative trait loci. Of the vSNPs specifically associated with the genetic variance heterogeneity of oil concentration, 89% can be explained by additional linked mean‐effects genetic variants. Furthermore, we demonstrated that gene × gene interactions play important roles in the formation of variance heterogeneity for fatty acid compositional traits. The interaction pattern was validated for one gene pair (GRMZM2G035341 and GRMZM2G152328) using yeast two‐hybrid and bimolecular fluorescent complementation analyses. Our findings have implications for uncovering the genetic basis of hidden additive genetic effects and epistatic interaction effects, and we indicate opportunities to stabilize efficient breeding and selection of high‐oil maize (Zea mays L.).  相似文献   
994.
Incorporating male sterility into hybrid seed production reduces its cost and ensures high varietal purity. Despite these advantages, male‐sterile lines have not been widely used to produce tomato (Solanum lycopersicum) hybrid seeds. We describe the development of a biotechnology‐based breeding platform that utilized genic male sterility to produce hybrid seeds. In this platform, we generated a novel male‐sterile tomato line by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9)‐mediated mutagenesis of a stamen‐specific gene SlSTR1 and devised a transgenic maintainer by transforming male‐sterile plants with a fertility‐restoration gene linked to a seedling‐colour gene. Offspring of crosses between a hemizygous maintainer and the homozygous male‐sterile plant segregated into 50% non‐transgenic male‐sterile plants and 50% male‐fertile maintainer plants, which could be easily distinguished by seedling colour. This system has great practical potential for hybrid seed breeding and production as it overcomes the problems intrinsic to other male‐sterility systems and can be easily adapted for a range of tomato cultivars and diverse vegetable crops.  相似文献   
995.
996.
Thiol‐based redox‐regulation is vital for coordinating chloroplast functions depending on illumination and has been throroughly investigated for thioredoxin‐dependent processes. In parallel, glutathione reductase (GR) maintains a highly reduced glutathione pool, enabling glutathione‐mediated redox buffering. Yet, how the redox cascades of the thioredoxin and glutathione redox machineries integrate metabolic regulation and detoxification of reactive oxygen species remains largely unresolved because null mutants of plastid/mitochondrial GR are embryo‐lethal in Arabidopsis thaliana. To investigate whether maintaining a highly reducing stromal glutathione redox potential (EGSH) via GR is necessary for functional photosynthesis and plant growth, we created knockout lines of the homologous enzyme in the model moss Physcomitrella patens. In these viable mutant lines, we found decreasing photosynthetic performance and plant growth with increasing light intensities, whereas ascorbate and zeaxanthin/antheraxanthin levels were elevated. By in vivo monitoring stromal EGSH dynamics, we show that stromal EGSH is highly reducing in wild‐type and clearly responsive to light, whereas an absence of GR leads to a partial glutathione oxidation, which is not rescued by light. By metabolic labelling, we reveal changing protein abundances in the GR knockout plants, pinpointing the adjustment of chloroplast proteostasis and the induction of plastid protein repair and degradation machineries. Our results indicate that the plastid thioredoxin system is not a functional backup for the plastid glutathione redox systems, whereas GR plays a critical role in maintaining efficient photosynthesis.  相似文献   
997.
998.
Free amino acids (FAAs) and protein‐bound amino acids (PBAAs) in seeds play an important role in seed desiccation, longevity, and germination. However, the effect that water stress has on these two functional pools, especially when imposed during the crucial seed setting stage is unclear. To better understand these effects, we exposed Arabidopsis plants at the seed setting stage to a range of water limitation and water deprivation conditions and then evaluated physiological, metabolic, and proteomic parameters, with special focus on FAAs and PBAAs. We found that in response to severe water limitation, seed yield decreased, while seed weight, FAA, and PBAA content per seed increased. Nevertheless, the composition of FAAs and PBAAs remained unaltered. In response to severe water deprivation, however, both seed yield and weight were reduced. In addition, major alterations were observed in both FAA and proteome compositions, which indicated that both osmotic adjustment and proteomic reprogramming occurred in these naturally desiccation‐tolerant organs. However, despite the major proteomic alteration, the PBAA composition did not change, suggesting that the proteomic reprogramming was followed by a proteomic rebalancing. Proteomic rebalancing has not been observed previously in response to stress, but its occurrence under stress strongly suggests its natural function. Together, our data show that the dry seed PBAA composition plays a key role in seed fitness and therefore is rigorously maintained even under severe water stress, while the FAA composition is more plastic and adaptable to changing environments, and that both functional pools are distinctly regulated.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号