首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3119篇
  免费   195篇
  2022年   17篇
  2021年   44篇
  2020年   33篇
  2019年   30篇
  2018年   55篇
  2017年   55篇
  2016年   73篇
  2015年   104篇
  2014年   126篇
  2013年   157篇
  2012年   183篇
  2011年   180篇
  2010年   115篇
  2009年   85篇
  2008年   156篇
  2007年   151篇
  2006年   122篇
  2005年   153篇
  2004年   123篇
  2003年   128篇
  2002年   132篇
  2001年   76篇
  2000年   85篇
  1999年   89篇
  1998年   49篇
  1997年   30篇
  1996年   30篇
  1995年   31篇
  1994年   29篇
  1993年   31篇
  1992年   61篇
  1991年   43篇
  1990年   58篇
  1989年   46篇
  1988年   43篇
  1987年   31篇
  1986年   28篇
  1985年   29篇
  1984年   32篇
  1983年   13篇
  1980年   14篇
  1979年   17篇
  1978年   22篇
  1977年   15篇
  1976年   18篇
  1975年   16篇
  1974年   16篇
  1973年   20篇
  1972年   19篇
  1970年   22篇
排序方式: 共有3314条查询结果,搜索用时 453 毫秒
101.
The small phytoplankton genus Triparma belongs to the class Bolidophyceae and contains two distinct forms: silicified species and naked flagellated species (formerly Bolidomonas). Recent studies showed that four silicified species/strains (Triparma laevis f. inornata, T. laevis f. longispina, T. strigata, and T. aff. verrucosa) belong to a single clade that is paraphyletic, because it also contains an unclassified flagellated strain, and is sister to a flagellated species, T. eleuthera. In this study, we isolated and characterized two new strains of silicified species to test the phylogenetic unity of silicified bolidophytes. The isolates were identified as T. retinervis strains because they possessed fine areolation on the cell wall. 18S rDNA and rbcL phylogenetic analyses demonstrated that T. retinervis formed a new silicified clade that is sister to the flagellated species T. pacifica. This reveals that there are at least two distinct clades including both silicified and flagellated Triparma species.  相似文献   
102.
103.
Oncogene-induced senescence (OIS) is a stable cell cycle arrest that occurs in normal cells upon oncogene activation. Cells undergoing OIS express a wide variety of secreted factors that affect the senescent microenvironment termed the senescence-associated secretory phenotype (SASP), which is beneficial or detrimental in a context-dependent manner. OIS cells are also characterized by marked epigenetic changes. We globally assessed histone modifications of OIS cells and discovered an increase in the active histone marks H3K79me2/3. The H3K79 methyltransferase disruptor of telomeric silencing 1-like (DOT1L) was necessary and sufficient for increased H3K79me2/3 occupancy at the IL1A gene locus, but not other SASP genes, and was downstream of STING. Modulating DOT1L expression did not affect the cell cycle arrest. Together, our studies establish DOT1L as an epigenetic regulator of the SASP, whose expression is uncoupled from the senescence-associated cell cycle arrest, providing a potential strategy to inhibit the negative side effects of senescence while maintaining the beneficial inhibition of proliferation.  相似文献   
104.
The distinct levels of Rac activity differentially regulate the pattern of intrinsic cell migration. However, it remains unknown how Rac activity is modulated and how the level of Rac activity controls cell migratory behavior. Here we show that Slit-Robo GAP 1 (srGAP1) is a modulator of Rac activity in locomotive cells. srGAP1 possesses a GAP activity specific to Rac1 and is recruited to lamellipodia in a Rac1-dependent manner. srGAP1 limits Rac1 activity and allows concomitant activation of Rac1 and RhoA, which are mutually inhibitory. When both GTPases are activated, the protrusive structures caused by Rac1-dependent actin reorganization are spatially restricted and periodically destabilized, causing ruffling by RhoA-induced actomyosin contractility. Depletion of srGAP1 overactivates Rac1 and inactivates RhoA, resulting in continuous spatiotemporal spreading of lamellipodia and a modal shift of intrinsic cell motility from random to directionally persistent. Thus srGAP1 is a key determinant of lamellipodial dynamics and cell migratory behavior.  相似文献   
105.
To facilitate polarized vesicular trafficking and signal transduction, neuronal endosomes have evolved sophisticated mechanisms for pH homeostasis. NHE5 is a member of the Na+/H+ exchanger family and is abundantly expressed in neurons and associates with recycling endosomes. Here we show that NHE5 potently acidifies recycling endosomes in PC12 cells. NHE5 depletion by plasmid-based short hairpin RNA significantly reduces cell surface abundance of TrkA, an effect similar to that observed after treatment with the V-ATPase inhibitor bafilomycin. A series of cell-surface biotinylation experiments suggests that anterograde trafficking of TrkA from recycling endosomes to plasma membrane is the likeliest target affected by NHE5 depletion. NHE5 knockdown reduces phosphorylation of Akt and Erk1/2 and impairs neurite outgrowth in response to nerve growth factor (NGF) treatment. Of interest, although both phosphoinositide 3-kinase–Akt and Erk signaling are activated by NGF-TrkA, NGF-induced Akt-phosphorylation appears to be more sensitively affected by perturbed endosomal pH. Furthermore, NHE5 depletion in rat cortical neurons in primary culture also inhibits neurite formation. These results collectively suggest that endosomal pH modulates trafficking of Trk-family receptor tyrosine kinases, neurotrophin signaling, and possibly neuronal differentiation.  相似文献   
106.
Abstract

Griseolic acid derivatives which were modified at the 2-and/or 6-positions were first synthesized from griseolic acid by a ring opening—reclosure reaction of the adenine ring. Among these derivatives, the 2-amino-6-deamino-6-hydroxyl (guanine) derivative showed 3.3 and 45 times stronger inhibitory activity against cAMP and cGMP PDE, respectively, than those of griseolic acid. Structure-activity relationships among these derivatives are also discussed.  相似文献   
107.

Background

When manifested as Mycobacterium tuberculosis (MTB) bacteremia, disseminated MTB infection clinically mimics other serious blood stream infections often hindering early diagnosis and initiation of potentially life-saving anti-tuberculosis therapy. In a cohort of hospitalized HIV-infected Ugandan patients with severe sepsis, we report the frequency, management and outcomes of patients with MTB bacteremia and propose a risk score based on clinical predictors of MTB bacteremia.

Methods

We prospectively enrolled adult patients with severe sepsis at two Ugandan hospitals and obtained blood cultures for MTB identification. Multivariable logistic regression modeling was used to determine predictors of MTB bacteremia and to inform the stratification of patients into MTB bacteremia risk categories based on relevant patient characteristics.

Results

Among 368 HIV-infected patients with a syndrome of severe sepsis, eighty-six (23%) had MTB bacteremia. Patients with MTB bacteremia had a significantly lower median CD4 count (17 vs 64 lymphocytes/mm3, p<0.001) and a higher 30-day mortality (53% vs 32%, p = 0.001) than patients without MTB bacteremia. A minority of patients with MTB bacteremia underwent standard MTB diagnostic testing (24%) or received empiric anti-tuberculosis therapy (15%). Independent factors associated with MTB bacteremia included male sex, increased heart rate, low CD4 count, absence of highly active anti-retroviral therapy, chief complaint of fever, low serum sodium and low hemoglobin. A risk score derived from a model containing these independent predictors had good predictive accuracy [area under the curve = 0.85, 95% CI 0.80–0.89].

Conclusions

Nearly 1 in 4 adult HIV-infected patients hospitalized with severe sepsis in 2 Ugandan hospitals had MTB bacteremia. Among patients in whom MTB was suspected, standard tests for diagnosing pulmonary MTB were inaccurate for correctly classifying patients with or without bloodstream MTB infection. A MTB bacteremia risk score can improve early diagnosis of MTB bacteremia particularly in settings with increased HIV and MTB co-infection.  相似文献   
108.

Background

Rimmed vacuoles (RVs) are round-oval cytoplasmic inclusions, detected in muscle cells of patients with myopathies, such as inclusion body myositis (IBM) and distal myopathy with RVs (DMRV). Granulovacuolar degeneration (GVD) bodies are spherical vacuoles containing argentophilic and hematoxyphilic granules, and are one of the pathological hallmarks commonly found in hippocampal pyramidal neurons of patients with aging-related neurodegenerative diseases, such as Alzheimer''s disease and Parkinson''s disease. These diseases are common in the elderly and share some pathological features. Therefore, we hypothesized that mechanisms of vacuolar formation in RVs and GVD bodies are common despite their role in two differing pathologies. We explored the components of RVs by immunohistochemistry, using antibodies for GVD markers.

Methods

Subjects included one AD case, eight cases of sporadic IBM, and three cases of DMRV. We compared immunoreactivity and staining patterns for GVD markers. These markers included: (1) tau-modifying proteins (caspase 3, cyclin-dependent kinase 5 [CDK5], casein kinase 1δ [CK1δ], and c-jun N-terminal kinase [JNK]), (2) lipid raft-associated materials (annexin 2, leucine-rich repeat kinase 2 [LRRK2], and flotillin-1), and (3) other markers (charged multi-vesicular body protein 2B [CHMP2B] and phosphorylated transactive response DNA binding protein-43 [pTDP43]) in both GVD bodies and RVs. Furthermore, we performed double staining of each GVD marker with pTDP43 to verify the co-localization.

Results

GVD markers, including lipid raft-associated proteins and tau kinases, were detected in RVs. CHMP2B, pTDP43, caspase 3, LRRK2, annexin 2 and flotillin-1 were detected on the rim and were diffusely distributed in the cytoplasm of RV-positive fibers. CDK5, CK1δ and JNK were detected only on the rim. In double staining experiments, all GVD markers colocalized with pTDP43 in RVs.

Conclusions

These results suggest that RVs of muscle cells and GVD bodies of neurons share a number of molecules, such as raft-related proteins and tau-modifying proteins.  相似文献   
109.

Background/Aims

The Japanese National Hospital Organization evidence-based medicine (EBM) Study group for Adverse effects of Corticosteroid therapy (J-NHOSAC) is a Japanese hospital-based cohort study investigating the safety of the initial use of glucocorticoids (GCs) in patients with newly diagnosed autoimmune diseases. Using the J-NHOSAC registry, the purpose of this observational study is to analyse the rates, characteristics and associated risk factors of intracellular infections in patients with newly diagnosed autoimmune diseases who were initially treated with GCs.

Methodology/Principal Findings

A total 604 patients with newly diagnosed autoimmune diseases treated with GCs were enrolled in this registry between April 2007 and March 2009. Cox proportional-hazards regression was used to determine independent risk factors for serious intracellular infections with covariates including sex, age, co-morbidity, laboratory data, use of immunosuppressants and dose of GCs. Survival was analysed according to the Kaplan-Meier method and was assessed by the log-rank test. There were 127 serious infections, including 43 intracellular infections, during 1105.8 patient-years of follow-up. The 43 serious intracellular infections resulted in 8 deaths. After adjustment for covariates, diabetes (Odds ratio [OR]: 2.5, 95% confidence interval [95% CI] 1.1–5.9), lymphocytopenia (≦1000/μl, OR: 2.5, 95% CI 1.2–5.2) and use of high-dose (≧30 mg/day) GCs (OR: 2.4, 95% CI 1.1–5.3) increased the risk of intracellular infections. Survival curves showed lower intracellular infection-free survival rate in patients with diabetes, lymphocytopaenia and high-dose GCs treatments.

Conclusions/Significance

Patients with newly diagnosed autoimmune diseases were at high risk of developing intracellular infection during initial treatment with GCs. Our findings provide background data on the risk of intracellular infections of patients with autoimmune diseases. Clinicians showed remain vigilant for intracellular infections in patients with autoimmune diseases who are treated with GCs.  相似文献   
110.
Juvenile hormones (JHs) control a diversity of crucial life events in insects. In Lepidoptera which major agricultural pests belong to, JH signaling is critically controlled by a species-specific high-affinity, low molecular weight JH-binding protein (JHBP) in hemolymph, which transports JH from the site of its synthesis to target tissues. Hence, JHBP is expected to be an excellent target for the development of novel specific insect growth regulators (IGRs) and insecticides. A better understanding of the structural biology of JHBP should pave the way for the structure-based drug design of such compounds. Here, we report the crystal structure of the silkworm Bombyx mori JHBP in complex with two molecules of 2-methyl-2,4-pentanediol (MPD), one molecule (MPD1) bound in the JH-binding pocket while the other (MPD2) in a second cavity. Detailed comparison with the apo-JHBP and JHBP-JH II complex structures previously reported by us led to a number of intriguing findings. First, the JH-binding pocket changes its size in a ligand-dependent manner due to flexibility of the gate α1 helix. Second, MPD1 mimics interactions of the epoxide moiety of JH previously observed in the JHBP-JH complex, and MPD can compete with JH in binding to the JH-binding pocket. We also confirmed that methoprene, which has an MPD-like structure, inhibits the complex formation between JHBP and JH while the unepoxydated JH III (methyl farnesoate) does not. These findings may open the door to the development of novel IGRs targeted against JHBP. Third, binding of MPD to the second cavity of JHBP induces significant conformational changes accompanied with a cavity expansion. This finding, together with MPD2-JHBP interaction mechanism identified in the JHBP-MPD complex, should provide important guidance in the search for the natural ligand of the second cavity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号