首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3969篇
  免费   215篇
  国内免费   1篇
  2022年   15篇
  2021年   49篇
  2020年   15篇
  2019年   23篇
  2018年   49篇
  2017年   44篇
  2016年   62篇
  2015年   100篇
  2014年   131篇
  2013年   297篇
  2012年   194篇
  2011年   201篇
  2010年   146篇
  2009年   132篇
  2008年   190篇
  2007年   167篇
  2006年   168篇
  2005年   176篇
  2004年   183篇
  2003年   168篇
  2002年   192篇
  2001年   139篇
  2000年   137篇
  1999年   125篇
  1998年   64篇
  1997年   32篇
  1996年   36篇
  1995年   34篇
  1994年   22篇
  1993年   27篇
  1992年   85篇
  1991年   77篇
  1990年   72篇
  1989年   66篇
  1988年   62篇
  1987年   62篇
  1986年   51篇
  1985年   53篇
  1984年   29篇
  1983年   33篇
  1982年   26篇
  1981年   23篇
  1980年   22篇
  1979年   28篇
  1978年   19篇
  1977年   18篇
  1976年   23篇
  1975年   20篇
  1974年   27篇
  1968年   13篇
排序方式: 共有4185条查询结果,搜索用时 31 毫秒
991.
The permeability of 5(6)-carboxyfluorescein (CF) through the phospholipid bilayer membranes was measured by using the system in which the CF-containing phospholipid vesicles (liposomes) were suspended in the gas-liquid flow in an external loop airlift bubble column. The airlift was operated at various superficial gas velocities UG up to 2.4 cm/s at 25 and 40 degrees C. The CF-containing liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) had the nominal diameters of 50, 100, and 200 nm. The 50- and 100-nm liposomes were stable at 40 degrees C for 5 h even at a high UG value of 2.4 cm/s based on the observed turbidity of the liposome suspension in the airlift. On the other hand, the 200-nm liposomes were stable at a low UG value of 1.4 cm/s, although a progressive decrease in size of the liposomes was implied at the high UG value of 2.4 cm/s. The permeability coefficient PCF of CF through the lipid membrane of the 100-nm liposomes was significantly increased with increasing UG at a high temperature of 40 degrees C, while at a low temperature of 25 degrees C the PCF value was little dependent on UG. As a typical result on the above liposomes, the PCF value (9.2 x 10(-11) cm/s) at 40 degrees C and UG = 2.4 cm/s in the airlift was more than 15 times larger than that at 25 degrees C in the static liquid corresponding to UG = 0. In addition, the dependence of the PCF value on UG at 40 degrees C became more significant with increasing the size of liposomes suspended. The results obtained revealed that the permeability of the liposome membranes could be regulated by suspending the liposomes in the gas-liquid flow in the airlift without modulating the membrane composition of liposomes.  相似文献   
992.
Light-responsive gene expression is crucial to photosynthesizing organisms. Here, we studied functions of cis-elements (AU-box and SD sequences) and a trans-acting factor (ribonuclease, RNase) in light-responsive expression in cyanobacteria. The results indicated that AU-rich nucleotides with an AU-box, UAAAUAAA, just upstream from an SD confer instability on the mRNA under darkness. An RNase E/G homologue, Slr1129, of the cyanobacterium Synechocystis sp. strain PCC 6803 was purified and confirmed capable of endoribonucleolytic cleavage at the AU- (or AG)-rich sequences in vitro. The cleavage depends on the primary target sequence and secondary structure of the mRNA. Complementation tests using Escherichia coli rne/rng mutants showed that Slr1129 fulfilled the functions of both the RNase E and RNase G. An analysis of systematic mutations in the AU-box and SD sequences showed that the cis-elements also affect significantly mRNA stability in light-responsive genes. These results strongly suggested that dark-induced mRNA instability involves RNase E/G-type cleavage at the AU-box and SD sequences in cyanobacteria. The mechanical impact and a possible common mechanism with RNases for light-responsive gene expression are discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
993.
The remarkable hearing sensitivity and frequency selectivity in mammals is attributed to cochlear amplifier in the outer hair cells (OHCs). Prestin, a membrane protein in the lateral wall of OHC plasma membrane, is required for OHC electromotility and cochlear amplifier. In addition, GLUT5, a fructose transporter, is reported to be abundant in the plasma membrane of the OHC lateral wall and has been originally proposed as the OHC motor protein. Here we provide evidence of interactions between prestin/prestin and prestin/GLUT5 in transiently transfected HEK293T cells. We used a combination of techniques: (1) membrane colocalization by confocal microscopy, (2) fluorescence resonance energy transfer (FRET) by fluorescence activated cell sorting (FACS), (3) FRET by acceptor photobleaching, (4) FRET by fluorescence lifetime imaging (FRET-FLIM), and (5) coimmunoprecipitation. Our results suggest that homomeric and heteromeric prestin interactions occur in native OHCs to facilitate its electromotile function and that GLUT5 interacts with prestin for its elusive function.  相似文献   
994.
995.
996.
The type II transmembrane protease TMPRSS2 activates the spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) on the cell surface following receptor binding during viral entry into cells. In the absence of TMPRSS2, SARS-CoV achieves cell entry via an endosomal pathway in which cathepsin L may play an important role, i.e., the activation of spike protein fusogenicity. This study shows that a commercial serine protease inhibitor (camostat) partially blocked infection by SARS-CoV and human coronavirus NL63 (HCoV-NL63) in HeLa cells expressing the receptor angiotensin-converting enzyme 2 (ACE2) and TMPRSS2. Simultaneous treatment of the cells with camostat and EST [(23,25)trans-epoxysuccinyl-L-leucylamindo-3-methylbutane ethyl ester], a cathepsin inhibitor, efficiently prevented both cell entry and the multistep growth of SARS-CoV in human Calu-3 airway epithelial cells. This efficient inhibition could be attributed to the dual blockade of entry from the cell surface and through the endosomal pathway. These observations suggest camostat as a candidate antiviral drug to prevent or depress TMPRSS2-dependent infection by SARS-CoV.  相似文献   
997.
Cucumisin is a plant serine protease, isolated as an extracellular glycoprotein from the melon fruit Cucumis melo L. var. Prince. Cucumisin is composed of multiple domain modules, including catalytic, protease-associated, and fibronectin‐III-like domains. The crystal structure of cucumisin was determined by the multiwavelength anomalous dispersion method and refined at 2.75 Å resolution. A structural homology search indicated that the catalytic domain of cucumisin shares structural similarity with subtilisin and subtilisin-like fold enzymes. According to the Z-score, the highest structural similarity is with tomato subtilase 3 (SBT3), with an rmsd of 3.5 Å for the entire region. The dimer formation mediated by the protease-associated domain in SBT3 is a distinctive structural characteristic of cucumisin. On the other hand, analytical ultracentrifugation indicated that cucumisin is mainly monomeric in solution. Although the locations of the amino acid residues composing the catalytic triad are well conserved between cucumisin and SBT3, a disulfide bond is uniquely located near the active site of cucumisin. The steric circumstances of the active site with this disulfide bond are distinct from those of SBT3, and it contributes to the substrate preference of cucumisin, especially at the P2 position. Among the plant serine proteases, the thermostability of cucumisin is higher than that of its structural homologue SBT3, as determined by their melting points. A structural comparison between cucumisin and SBT3 revealed that cucumisin possesses less surface area and shortened loop regions. Consequently, the higher thermostability of cucumisin is achieved by its more compact structure.  相似文献   
998.
999.
The axial interactions of Cu(2+) in type 1 copper proteins control the physical characteristics of the proteins. We tuned the geometries of a de novo designed blue copper protein with a four-helical bundle structure. The designed protein axially bound various ligands, such as chloride, phosphate, sulfate, acetate, azide, and imidazole, to Cu(2+), exhibiting a blue or green color. The UV-vis spectral bands were observed at approximately 600?nm and approximately 450?nm, with the A (~450)/A (~600) ratios between 0.14 and 1.58. The stronger axial interaction shifted the geometry of the type 1 copper site from trigonal planar geometry (blue copper) toward a tetrahedral-like geometry (green copper). Resonance Raman spectral analyses showed that the phosphate-bound type had the highest-strength Cu-S bond, similar to that of plastocyanin. The chloride-bound type exhibited features similar to those of stellacyanin and nitrite reductase, and the imidazole-bound type exhibited features similar to those of azurin M121E mutant.  相似文献   
1000.
Retinoic acid (RA)-mediated expression of the homeobox gene Hox1 is a hallmark of the chordate central nervous system (CNS). It has been suggested that the RA-Hox1 network also functions in the epidermal ectoderm of chordates. Here, we show that in the urochordate ascidian Ciona intestinalis, RA-Hox1 in the epidermal ectoderm is necessary for formation of the atrial siphon placode (ASP), a structure homologous to the vertebrate otic placode. Loss of Hox1 function resulted in loss of the ASP, which could be rescued by expressing Hox1 in the epidermis. As previous studies showed that RA directly upregulates Hox1 in the epidermis of Ciona larvae, we also examined the role of RA in ASP formation. We showed that abolishment of RA resulted in loss of the ASP, which could be rescued by forced expression of Hox1 in the epidermis. Our results suggest that RA-Hox1 in the epidermal ectoderm played a key role in the acquisition of the otic placode during chordate evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号