首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   793篇
  免费   49篇
  国内免费   1篇
  2020年   5篇
  2019年   6篇
  2018年   16篇
  2017年   9篇
  2016年   15篇
  2015年   14篇
  2014年   21篇
  2013年   59篇
  2012年   35篇
  2011年   36篇
  2010年   17篇
  2009年   25篇
  2008年   38篇
  2007年   31篇
  2006年   33篇
  2005年   30篇
  2004年   47篇
  2003年   46篇
  2002年   62篇
  2001年   30篇
  2000年   35篇
  1999年   21篇
  1998年   12篇
  1997年   11篇
  1996年   9篇
  1995年   13篇
  1994年   6篇
  1993年   7篇
  1992年   10篇
  1991年   13篇
  1990年   10篇
  1989年   7篇
  1988年   10篇
  1987年   6篇
  1986年   8篇
  1984年   4篇
  1983年   7篇
  1982年   6篇
  1981年   8篇
  1980年   6篇
  1979年   5篇
  1978年   6篇
  1977年   5篇
  1976年   8篇
  1975年   6篇
  1974年   5篇
  1973年   4篇
  1970年   3篇
  1969年   3篇
  1968年   3篇
排序方式: 共有843条查询结果,搜索用时 62 毫秒
101.
The N' gene of Nicotiana sylvestris and L genes of Capsicum plants confer the resistance response accompanying the hypersensitive response (HR) elicited by tobamovirus coat proteins (CP) but with different viral specificities. Here, we report the identification of the N' gene. We amplified and cloned an N' candidate using polymerase chain reaction primers designed from L gene sequences. The N' candidate gene was a single 4143 base pairs fragment encoding a coiled-coil nucleotide-binding leucine-rich repeat (LRR)-type resistance protein of 1,380 amino acids. The candidate gene induced the HR in response to the coexpression of tobamovirus CP with the identical specificity as reported for N'. Analysis of N'-containing and tobamovirus-susceptible N. tabacum accessions supported the hypothesis that the candidate is the N' gene itself. Chimera analysis between N' and L(3) revealed that their LRR domains determine the spectrum of their tobamovirus CP recognition. Deletion and mutation analyses of N' and L(3) revealed that the conserved sequences in their C-terminal regions have important roles but contribute differentially to the recognition of common avirulence proteins. The results collectively suggest that Nicotiana N' and Capsicum L genes, which most likely evolved from a common ancestor, differentiated in their recognition specificity through changes in the structural requirements for LRR function.  相似文献   
102.
Surgical or pharmacologic methods to control gonadal androgen biosynthesis are effective approaches in the treatment of a variety of non-neoplastic and neoplastic diseases. For example, androgen ablation and its consequent reduction in circulating levels of testosterone is an effective therapy for advanced prostate cancers. Unfortunately, the therapeutic effectiveness of this approach is often temporary because of disease progression to the 'castration resistant' (CRPC) state, a situation for which there are limited treatment options. One mechanism thought to be responsible for the development of CRPC is extra-gonadal androgen synthesis and the resulting impact of these residual extra-gonadal androgens on prostate tumor cell proliferation. An important enzyme responsible for the synthesis of extra-gonadal androgens is CYP17A1 which possesses both 17,20-lyase and 17-hydroxylase catalytic activities with the 17,20-lyase activity being key in the androgen biosynthetic process. Orteronel (TAK-700), a novel, selective, and potent inhibitor of 17,20-lyase is under development as a drug to inhibit androgen synthesis. In this study, we quantified the inhibitory activity and specificity of orteronel for testicular and adrenal androgen production by evaluating its effects on CYP17A1 enzymatic activity, steroid production in monkey adrenal cells and human adrenal tumor cells, and serum levels of dehydroepiandrosterone (DHEA), cortisol, and testosterone after oral dosing in castrated and intact male cynomolgus monkeys. We report that orteronel potently suppresses androgen production in monkey adrenal cells but only weakly suppresses corticosterone and aldosterone production; the IC(50) value of orteronel for cortisol was ~3-fold higher than that for DHEA. After single oral dosing, serum levels of DHEA, cortisol, and testosterone were rapidly suppressed in intact cynomolgus monkeys. In castrated monkeys treated twice daily with orteronel, suppression of DHEA and testosterone persisted throughout the treatment period. In both in vivo models and in agreement with our in vitro data, suppression of serum cortisol levels following oral dosing was less than that seen for DHEA. In terms of human CYP17A1 and human adrenal tumor cells, orteronel inhibited 17,20-lyase activity 5.4 times more potently than 17-hydroxylase activity in cell-free enzyme assays and DHEA production 27 times more potently than cortisol production in human adrenal tumor cells, suggesting greater specificity of inhibition between 17,20-lyase and 17-hydroxylase activities in humans vs monkeys. In summary, orteronel potently inhibited the 17,20-lyase activity of monkey and human CYP17A1 and reduced serum androgen levels in vivo in monkeys. These findings suggest that orteronel may be an effective therapeutic option for diseases where androgen suppression is critical, such as androgen sensitive and CRPC.  相似文献   
103.
104.
105.
106.
ABSTRACT: BACKGROUND: In the past decade, researchers have proposed that the pldA gene for outer membrane phospholipase A (OMPLA) is important for bacterial colonization of the human gastric ventricle. Several conserved Helicobacter pylori genes have distinct genotypes in different parts of the world, biogeographic patterns that can be analyzed through phylogenetic trees. The current study will shed light on the importance of the pldA gene in H. pylori. In silico sequence analysis will be used to investigate whether the bacteria are in the process of preserving, optimizing, or rejecting the pldA gene. The pldA gene will be phylogenetically compared to other housekeeping (HK) gene, and a possible origin via horizontal gene transfer (HGT) will be evaluated through both at intra- and inter-species evolutionary analyses. RESULTS: In this study, pldA gene sequences were phylogenetically analyzed and compared with a large reference set of concatenated HK gene sequences. A total of 246 pldA nucleotide sequences were used; 207 were from Norwegian isolates, 20 were from Korean isolates, and 19 were from the NCBI database. Best-fit evolutionary models were determined with MEGA5 ModelTest for the pldA (K80 + I + G) and HK (GTR + I + G) sequences, and maximum likelihood trees were constructed. Both HK and pldA genes showed biogeographic clustering. Horizontal gene transfer was inferred based on significantly different GC contents, the codon adaptation index, and a phylogenetic conflict between a tree of OMPLA protein sequences representing 171 species and a tree of the AtpA HK protein for 169 species. Although a vast majority of the residues in OMPLA were predicted to be under purifying selection, sites undergoing positive selection were also found. CONCLUSIONS: Our findings indicate that the pldA gene could have been more recently acquired than seven of the HK genes found in H. pylori. However, the common biogeographic patterns of both the HK and pldA sequences indicated that the transfer occurred long ago. Our results indicate that the bacterium is preserving the function of OMPLA, although some sites are still being evolutionarily optimized.  相似文献   
107.
A series of 4-phenylpyrrole derivatives D were designed, synthesized, and evaluated for their potential as novel orally available androgen receptor antagonists therapeutically effective against castration-resistant prostate cancers. 4-Phenylpyrrole compound 1 exhibited androgen receptor (AR) antagonistic activity against T877A and W741C mutant-type ARs as well as wild-type AR. An arylmethyl group incorporated into compound 1 contributed to enhancement of antagonistic activity. Compound 4n, 1-{[6-chloro-5-(hydroxymethyl)pyridin-3-yl]methyl}-4-(4-cyanophenyl)-2,5-dimethyl-1H-pyrrole-3-carbonitrile exhibited inhibitory effects on tumor cell growth against the bicalutamide-resistant LNCaP-cxD2 cell line as well as the androgen receptor-dependent JDCaP cell line in a mouse xenograft model. These results demonstrate that this series of pyrrole compounds are novel androgen receptor antagonists with efficacy against prostate cancer cells, including castration-resistant prostate cancers such as bicalutamide-resistant prostate cancer.  相似文献   
108.
109.
110.
Abstract Adult stem cells have been reported to exist in various tissues. The isolation of high-quality human stem cells that can be used for regeneration of fatal deseases from accessible resources is an important advance in stem cell research. In the present study, we identified a novel stem cell, which we named tooth germ progenitor cells (TGPCs), from discarded third molar, commonly called as wisdom teeth. We demonstrated the characterization and distinctiveness of the TGPCs, and found that TGPCs showed high proliferation activity and capability to differentiate in vitro into cells of three germ layers including osteoblasts, neural cells, and hepatocytes. TGPCs were examined by the transplantation into a carbon tetrachloride (CCl4)-treated liver injured rat to determine whether this novel cell source might be useful for cell-based therapy to treat liver diseases. The successful engraftment of the TGPCs was demonstrated by PKH26 fluorescence in the recipient's rat as to liver at 4 weeks after transplantation. The TGPCs prevented the progression of liver fibrosis in the liver of CCl4-treated rats and contributed to the restoration of liver function, as assessed by the measurement of hepatic serum markers aspartate aminotransferase and alanine aminotransferase. Furthermore, the liver functions, observed by the levels of serum bilirubin and albumin, appeared to be improved following transplantation of TGPCs. These findings suggest that multipotent TGPCs are one of the candidates for cell-based therapy to treat liver diseases and offer unprecedented opportunities for developing therapies in treating tissue repair and regeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号