首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   21篇
  国内免费   1篇
  183篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   6篇
  2013年   11篇
  2012年   11篇
  2011年   14篇
  2010年   8篇
  2009年   7篇
  2008年   2篇
  2007年   9篇
  2006年   10篇
  2005年   4篇
  2004年   12篇
  2003年   8篇
  2002年   6篇
  2001年   4篇
  2000年   7篇
  1999年   8篇
  1998年   3篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1994年   10篇
  1993年   9篇
  1992年   7篇
  1990年   2篇
  1987年   1篇
  1986年   2篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
61.
62.
63.
InArabidopsis thaliana L., accumulation of abscisic acid (ABA) began to increase 2 h after plants had been subjected to dehydration stress and reached maximum levels after 10h. Differential hybridization was used to isolate 26Arabidopsis cDNAs with gene expression induced by a 1 h dehydration treatment. The cDNA clones were classified into 16 groups based on Southern blot hybridization, and named ERD (early-responsive todehydration) clones. Partial sequencing of the cDNA clones revealed that three ERDs were identical to those of HSP cognates (Athsp70-1, Athsp81-2, and ubiquitin extension protein). Dehydration stress strongly induced the expression of genes for the three ERDs, while application of ABA, which is known to act as a signal transmitter in dehydration-stressed plants, did not significantly affect the ERD gene expression. This result suggests that these HSP cognates are preferentially responsive to dehydration stress inA. thaliana, and that signaling pathways for the expression of these genes under conditions of dehydration stress are not mainly mediated by ABA. We also discuss the possible functions of these three ERD gene products against dehydration stress.  相似文献   
64.
Abscisic acid (ABA) is important in seed maturation, seed dormancy, stomatal closure, and stress response. Many genes that function in ABA signal transduction pathways have been identified. However, most important signaling molecules involved in the perception of the ABA signal or with ABA receptors have not been identified yet. Receptor-like kinase1 (RPK1), a Leu-rich repeat (LRR) receptor kinase in the plasma membrane, is upregulated by ABA in Arabidopsis thaliana. Here, we show the phenotypes of T-DNA insertion mutants and RPK1-antisense plants. Repression of RPK1 expression in Arabidopsis decreased sensitivity to ABA during germination, growth, and stomatal closure; microarray and RNA gel analysis showed that many ABA-inducible genes are downregulated in these plants. Furthermore, overexpression of the RPK1 LRR domain alone or fused with the Brassinosteroid-insensitive1 kinase domain in plants resulted in phenotypes indicating ABA sensitivity. RPK1 is involved in the main ABA signaling pathway and in early ABA perception in Arabidopsis.  相似文献   
65.
66.
67.
68.
69.
The freezing tolerance of 38 independent transgenic potato lines derived from the cultivar Desiree was tested in vitro using plantlets. The lines were transgenic for the DREB1A gene under control of the rd29A promoter, both of which were derived from Arabidopsis thaliana. The level of damage caused by freezing varied significantly among the transgenic clones and a non-transgenic control (cv. Desiree). Phenotypic evaluation indicated that the variable responses to freezing were attributable to genotypic variation, but freezing tolerance was not dependent on the number of insertions. Northern blot analysis using a DREB1A cDNA probe revealed high levels of DREB1A expression among the transgenic clones during the initial cold exposure at 4°C (after 2 h) and in the early stages of freezing (−20°C, 1–10 min). Furthermore, a linear correlation was detected between the level of expression and the phenotypic response for all lines except D138. Thus, in the case of potato, a significant increase in freezing tolerance was observed in vitro on a small scale following the introduction of rd29A::DREB1A. Additional testing will show whether this strategy can be used for tolerance breeding in potato and to increase the freezing tolerance of other agriculturally important crops. Babak Behnam and Akira Kikuchi equally contributed for this work.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号