首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13563篇
  免费   1105篇
  国内免费   5篇
  14673篇
  2023年   127篇
  2022年   74篇
  2021年   200篇
  2020年   181篇
  2019年   159篇
  2018年   417篇
  2017年   400篇
  2016年   376篇
  2015年   316篇
  2014年   363篇
  2013年   665篇
  2012年   1116篇
  2011年   1238篇
  2010年   584篇
  2009年   413篇
  2008年   1043篇
  2007年   1063篇
  2006年   1012篇
  2005年   894篇
  2004年   873篇
  2003年   825篇
  2002年   696篇
  2001年   138篇
  2000年   215篇
  1999年   122篇
  1998年   82篇
  1997年   60篇
  1996年   57篇
  1995年   70篇
  1994年   59篇
  1993年   55篇
  1992年   69篇
  1991年   54篇
  1990年   46篇
  1989年   33篇
  1988年   31篇
  1987年   32篇
  1986年   22篇
  1985年   27篇
  1984年   48篇
  1983年   28篇
  1982年   45篇
  1981年   43篇
  1980年   49篇
  1979年   30篇
  1978年   33篇
  1977年   30篇
  1976年   31篇
  1975年   30篇
  1974年   21篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
61.
How the complexity of food webs depends on environmental variables is a long-standing ecological question. It is unclear though how food-chain length should vary with adaptive evolution of the constitutive species. Here we model the evolution of species colonisation rates and its consequences on occupancies and food-chain length in metacommunities. When colonisation rates can evolve, longer food-chains can persist. Extinction, perturbation and habitat loss all affect evolutionarily stable colonisation rates, but the strength of the competition-colonisation trade-off has a major role: weaker trade-offs yield longer chains. Although such eco-evo dynamics partly alleviates the spatial constraint on food-chain length, it is no magic bullet: the highest, most vulnerable, trophic levels are also those that least benefit from evolution. We provide qualitative predictions regarding how trait evolution affects the response of communities to disturbance and habitat loss. This highlights the importance of eco-evolutionary dynamics at metacommunity level in determining food-chain length.  相似文献   
62.
63.

Aim

The distribution of mesoplankton communities has been poorly studied at global scale, especially from in situ instruments. This study aims to (1) describe the global distribution of mesoplankton communities in relation to their environment and (2) assess the ability of various environmental-based ocean regionalizations to explain the distribution of these communities.

Location

Global ocean, 0–500 m depth.

Time Period

2008–2019.

Major Taxa Studied

Twenty-eight groups of large mesoplanktonic and macroplanktonic organisms, covering Metazoa, Rhizaria and Cyanobacteria.

Methods

From a global data set of 2500 vertical profiles making use of the Underwater Vision Profiler 5 (UVP5), an in situ imaging instrument, we studied the global distribution of large (>600 μm) mesoplanktonic organisms. Among the 6.8 million imaged objects, 330,000 were large zooplanktonic organisms and phytoplankton colonies, the rest consisting of marine snow particles. Multivariate ordination (PCA) and clustering were used to describe patterns in community composition, while comparison with existing regionalizations was performed with regression methods (RDA).

Results

Within the observed size range, epipelagic plankton communities were Trichodesmium-enriched in the intertropical Atlantic, Copepoda-enriched at high latitudes and in upwelling areas, and Rhizaria-enriched in oligotrophic areas. In the mesopelagic layer, Copepoda-enriched communities were also found at high latitudes and in the Atlantic Ocean, while Rhizaria-enriched communities prevailed in the Peruvian upwelling system and a few mixed communities were found elsewhere. The comparison between the distribution of these communities and a set of existing regionalizations of the ocean suggested that the structure of plankton communities described above is mostly driven by basin-level environmental conditions.

Main Conclusions

In both layers, three types of plankton communities emerged and seemed to be mostly driven by regional environmental conditions. This work sheds light on the role not only of metazoans, but also of unexpected large protists and cyanobacteria in structuring large mesoplankton communities.  相似文献   
64.

Aim

It is crucial to monitor how the productivity of grasslands varies with its temporal stability for management of these ecosystems. However, identifying the direction of the productivity–stability relationship remains challenging because ecological stability has multiple components that can display neutral, positive or negative covariations. Furthermore, evidence suggests that the direction of the productivity–stability relationship depends on the biotic interactions and abiotic conditions that underlie ecosystem productivity and stability. We decipher the relationships between grassland productivity and two components of its stability in four habitat types with contrasting environments and flora.

Location

France.

Time period

2000–2020.

Major taxa

Grassland plant species.

Methods

We used c. 20,000 vegetation plots spread across French permanent grasslands and remotely sensed vegetation indices to quantify grassland productivity and temporal stability. We decomposed stability into constancy (i.e., temporal invariability) and resistance (i.e., maximum deviation from average) and deciphered the direct and indirect effects of abiotic (namely growing season length and nitrogen input) and biotic (namely plant taxonomic diversity, trait diversity and community-weighted mean traits) factors on productivity–stability relationships using structural equation models.

Results

We found a positive relationship between productivity and constancy and a negative relationship between productivity and resistance in all habitats. Abiotic factors had stronger effects on productivity and stability compared with biotic factors. A longer growing season enhanced grassland productivity and constancy. Nitrogen input had positive and negative effects on grassland productivity and resistance, respectively. Trait values affected the constancy and resistance of grassland more than taxonomic and trait diversity, with effects varying from one habitat to another. Productivity was not related to any biotic factor.

Main conclusions

Our findings reveal how vital it is to consider both the multiple components of stability and the interaction between environment and biodiversity to gain an understanding of the relationships between productivity and stability in real-world ecosystems, which is a crucial step for sustainable grassland management.  相似文献   
65.
The pem locus, which is responsible for the stable maintenance of the low copy number plasmid R100, contains the pemK gene, whose product has been shown to be a growth inhibitor. Here, we attempted to isolate mutants which became tolerant to transient induction of the PemK protein. We obtained 20 mutants (here called pkt for PemK tolerance), of which 9 were temperature sensitive for growth. We analyzed the nine mutants genetically and found that they could be classified into three complementation groups, pktA, pktB and pktC, which corresponded to three genes, ileS, gltX and asnS, encoding isoleucyl-, glutamyl- and asparaginyl-tRNA synthetases, respectively. Since these aminoacyl-tRNA synthetase mutants did not produce the PemK protein upon induction at the restrictive temperature, these mutants could be isolated because they behaved as if they were tolerant to the PemK protein. The procedure is therefore useful for isolating temperature-sensitive mutants of aminoacyl-tRNA synthetases.  相似文献   
66.
67.
Aedes aegypti L. (Diptera: Culicidae) is a vector for serious diseases in tropical regions. This pest is mainly controlled by commercial larvicides but the application of such products has led to environmental problems. Essential oils (EO) have been consistently reported as molecules with insecticidal activity and can be used to produce more environmentally friendly larvicides in the control of A. aegypti. In this study, the larvicidal effect of essential oils (EO) from the leaves of three Artemisia species was evaluated against Aaegypti. The oils were obtained from steam distillation and their chemical composition was determined by gas chromatography–mass spectrometry. The EO of Artemisia camphorata was the most active in the screening bioassay and presented LC50 and LC95 of 64.95 and 74.18 μg ml−1, respectively. In addition, we found that germacrene D-4-ol was the constituent responsible for the toxicity of this EO. Artemisia camphorata EO and its major constituent, germacrene D-4-ol, are promising for the development of natural larvicides against A. aegypti.  相似文献   
68.
Riparian forests play an important role in stream ecosystems, as they support biodiversity, reduce water erosion, and provide litter that fuels aquatic biota. However, they are affected by great array of anthropogenic threats (e.g., fire, logging, and organic pollution), which alter species composition and their physical structure. Although forest recovery after disturbance such as logging can take decades, the legacy of forest clear-cut logging on key processes in tropical riparian ecosystems is mostly unknown. Here, we investigated how litter inputs (leaves, twigs, and reproductive parts) and storage, key processes for carbon and nutrient recycling and for forest and stream biota, are influenced by riparian vegetation undergoing succession (after 28 years from logging) through the comparison of reference and logged forest sites in the Cerrado biome. Litterfall was overall similar between forest types, but litterfall of twigs was twofold higher at logged than reference sites. Similarly, litter inputs from the bank to the stream (i.e., lateral inputs) and streambed storage were 50–60% higher at logged than reference sites. The higher litterfall observed in logged forests could be related to higher proportion of tree species that are characteristic of primary and secondary successional stages, including fast-growing and liana species, which often are more productive and common in anthropogenic areas. Our results showed that the legacy impact of clear-cut logging, even if residual woody vegetation is maintained in riparian buffers, can shift the type, quantity, and seasonality of litter subsidies to tropical streams. This knowledge should be considered within the context of management and conservation of communities and ecosystem processes in the forest-stream interfaces.  相似文献   
69.
Initiatedlselected (ISH) and normal (NH) rat hepatocytes were used to study cytoskeleton modifications induced by three liver acting chemicals: 2-AAF, a liver complete carcinogen; PB, a liver tumor promoter; and 4-AAF, a noncarcinogen analogue of 2-AAF. Cytoskeleton alterations were visualized by disappearance of F-actin fibers and tubulin depolymerization. The three drugs induced actin fragmentation in normal hepatocytes; a net loss of actin protein was observed with PB. They also induced varied tubulin depolymerization. The principal difference between chemicals is that 2-AAF led to non-reversible effects, in comparison with PB and 4-AAF which induced reversible damages on cytoskeleton. By contrast to normal hepatocytes, the cytoskeleton of ISH obtained from rats subjected to the resistant hepatocyte protocol was much less susceptible to the effect of the three chemicals. Moreover, we observed a lack of LDH release in the culture medium and a very rapid inducibility of GST activity after exposure of ISH to drugs. The moderate effect of the three chemicals on actin and tubdin in ISH could thus be explained by the resistant metabolic profile of these cells.Abbreviations TPA 12-O-tetradecanoyl-phorbol-13-acetate - PB phenobarbital - 2-AAF 2-acetylaminofluorene - 4-AAF 4-acetylaminofluorene - GSH reduced glutathione - GST glutathione-S-transferase - LDH lactatedehydrogenase - NH normal hepatocytes - ISH initiated/selected hepatocytes - BSA bovine serum albumin  相似文献   
70.
PtdIns and PtdInsP kinases from normal erythrocyte (AA) membranes and sickle cell anaemia erythrocyte (SS) membranes have been characterized. PtdIns kinase was studied in native membranes under conditions in which PtdInsP kinase and PtdInsP phosphatase do not express any activity. Kinetic analysis of the AA and SS PtdIns kinases indicate similar Km values for PtdIns and ATP but higher Vmax values for SS PtdIns kinase. PtdInsP kinase was partially purified from erythrocyte ghosts by NaCl extraction. The kinetic parameters of PtdInsP kinase determined under these conditions were similar in AA and SS NaCl extracts. These data suggest the presence of some effector of PtdIns kinase in SS cell membranes, resulting in a greater activity of the enzyme. This leads consequently, to increase the PtdInsP pool and to activate PtdInsP kinase, in agreement with our previous observations of a greater [32P]Pi incorporation in both polyphosphoinositides in SS cells relatively to AA cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号