首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2066篇
  免费   204篇
  国内免费   184篇
  2024年   10篇
  2023年   43篇
  2022年   77篇
  2021年   125篇
  2020年   81篇
  2019年   88篇
  2018年   87篇
  2017年   65篇
  2016年   92篇
  2015年   146篇
  2014年   161篇
  2013年   156篇
  2012年   182篇
  2011年   189篇
  2010年   89篇
  2009年   90篇
  2008年   96篇
  2007年   77篇
  2006年   73篇
  2005年   88篇
  2004年   50篇
  2003年   47篇
  2002年   44篇
  2001年   21篇
  2000年   32篇
  1999年   33篇
  1998年   10篇
  1997年   17篇
  1996年   22篇
  1995年   8篇
  1994年   17篇
  1993年   5篇
  1992年   21篇
  1991年   12篇
  1990年   17篇
  1989年   13篇
  1988年   12篇
  1987年   5篇
  1986年   8篇
  1985年   9篇
  1984年   8篇
  1983年   7篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有2454条查询结果,搜索用时 62 毫秒
161.
肺癌的表皮生长因子受体分子靶向治疗与基因突变   总被引:1,自引:0,他引:1  
肺癌分子靶向治疗近年来取得较大进展,特别是针对表皮生长因子受体(EGFR)分子靶向药物表现出确定的临床效果。临床应用表明,EGFR基因酪氨酸激酶域体细胞突变与非小细胞肺癌患者对酪氨酸激酶抑制剂吉非替尼的敏感性相关,本文就相关的研究进行了简述。  相似文献   
162.
Iron is essential for the normal functioning of cells but since it is also capable of generating toxic reactive oxygen species, the metabolism of iron is tightly regulated. The present article advances the view that astrocytes are largely responsible for distributing iron in the brain. Capillary endothelial cells are separated from the neuropil by the endfeet of astrocytes, so astrocytes are ideally positioned to regulate the transport of iron to other brain cells and to protect them if iron breaches the blood-brain barrier. Astrocytes do not appear to have a high metabolic requirement for iron yet they possess transporters for transferrin, haemin and non-transferrin-bound iron. They store iron efficiently in ferritin and can export iron by a mechanism that involves ferroportin and ceruloplasmin. Since astrocytes are a common site of abnormal iron accumulation in ageing and neurodegenerative disorders, they may represent a new therapeutic target for the treatment of iron-mediated oxidative stress.  相似文献   
163.

Background  

Mucolipidosis Type IV is currently characterized as a lysosomal storage disorder with defects that include corneal clouding, achlorhydria and psychomotor retardation. MCOLN1, the gene responsible for this disease, encodes the protein mucolipin-1 that belongs to the "Transient Receptor Potential" family of proteins and has been shown to function as a non-selective cation channel whose activity is modulated by pH. Two cell biological defects that have been described in MLIV fibroblasts are a hyperacidification of lysosomes and a delay in the exit of lipids from lysosomes.  相似文献   
164.
Gu  Wenbo  Lei  Jiahui  Zhu  He  Xiao  Yali  Zhang  Zhenping  Zhao  Limin 《Molecular biology reports》2022,49(10):9283-9296
Background

A variety of smooth muscle-specific genes and proteins, including SMAD3, BMPR-II, and MRTF, are involved in airway remodeling in asthma. As a receptor of bone morphogenetic protein (BMP) signaling, BMPR-II has important roles in airway remodeling in asthma. However, the underlying mechanism of BMPR-II in airway smooth muscle cells (ASMCs) in asthma remains incomplete.

Methods

Wistar rats were intraperitoneally injected with ovalbumin antigen suspension and aluminium hydroxide and, stimulated with ovalbumin nebulized inhalation to constructed asthma model. Primary ASMCs were isolated with collagenase I and identified by testing the α-SMA expression. Quantitative polymerase chain reaction (qPCR) and western blot assay were employed to detect the gene expression. CCK8, Transwell and Fluo-4 A assays were introduced to measure the cell viability, migration and intracellular Ca2+. Co-Immunoprecipitation (Co-IP) assay was applied to test the interaction among proteins.

Results

First, we observed significant increases in BMPR-II in asthmatic rat model and ASMCs at both the mRNA and protein levels. Second, we observed that silencing of siBMPR-II inhibited proliferation, migratory capacity and intracellular Ca2+ concentration in ASMCs. Furthermore, our study demonstrated that siBMPR-II inhibited the Smad3 expression and overexpression promoted the bioactivity of ASMCs. In addition, this study showed that p-Smad3 could interacted with MRTF and siMRTF inhibits the bioactivity of ASMCs. Finally, our results revealed BMPR-II-SMAD3/MRTF pathway affected the bioactivity of ASMCs.

Conclusions

This study indicates that the BMPR-II-SMAD3/MRTF signaling pathway is involved in the process of ASMCs remodeling, providing novel avenues for the identification of new therapeutic modalities.

  相似文献   
165.
166.
167.
Because imminent introduction into Vietnam of a vaccine against Rotavirus A is anticipated, baseline information on the whole genome of representative strains is needed to understand changes in circulating strains that may occur after vaccine introduction. In this study, the whole genomes of two G2P[4] strains detected in Nha Trang, Vietnam in 2008 were sequenced, this being the last period during which virtually no rotavirus vaccine was used in this country. The two strains were found to be > 99.9% identical in sequence and had a typical DS‐1 like G2‐P[4]‐I2‐R2‐C2‐M2‐A2‐N2‐T2‐E2‐H2 genotype constellation. Analysis of the Vietnamese strains with > 184 G2P[4] strains retrieved from GenBank/EMBL/DDBJ DNA databases placed the Vietnamese strains in one of the lineages commonly found among contemporary strains, with the exception of the NSP2 and NSP4 genes. The NSP2 genes were found to belong to a previously undescribed lineage that diverged from Chinese sheep and goat rotavirus strains, including a Chinese rotavirus vaccine strain LLR with 95% nucleotide identity; the time of their most recent common ancestor was 1975. The NSP4 genes were found to belong, together with Thai and USA strains, to an emergent lineage (VIII), adding further diversity to ever diversifying NSP4 lineages. Thus, there is a need to enhance surveillance of locally‐circulating strains from both children and animals at the whole genome level to address the effect of rotavirus vaccines on changing strain distribution.  相似文献   
168.
Immunity of mammary gland in terms of in vitro activity of milk leukocytes has been evaluated during hot-humid, summer, and winter season in elite (n = 10) and non-elite (n = 10) crossbred cows. Milk samples were collected from all the cows throughout the year at 15-day interval. Milk somatic cell counts (SCC) and differential leukocyte counts (DLC) were evaluated microscopically. Milk neutrophils, macrophages, and lymphocytes were isolated and cultured in vitro. In vitro PI of milk neutrophils and macrophages was evaluated by colorimetric NBT (nitro-blue tetrazolium) reductive assay. Mitogen-induced milk lymphocyte blastogenic response was measured by colorimetric MTT (thiazolyl blue tetrazolium bromide) assay. Milk SCC was found to be significantly (p < 0.01) higher in elite cows compared to non-elite cows irrespective of season. There was significant (p < 0.05) increase in milk SCC during hot-humid season compared to winter season in both the group of the cows. There was no significant difference between group and season in terms of DLC. In vitro phagocytic index of elite cows was significantly (p < 0.01) higher than non-elite cows. The phagocytic index was significantly (p < 0.01) decreased in summer and hot-humid season compared to winter season in both the group of animals. Macrophages isolated from elite cows having significantly (p < 0.01) lower phagocytic index than non-elite cows which significantly (p < 0.01) decreased during summer and hot-humid season compared to winter. In vitro milk lymphocyte proliferative response was significantly (p < 0.01) lower in elite cows. Activity of B-lymphocytes decreased significantly (p < 0.01) during summer and hot-humid season than winter, but activity of T-lymphocytes remains unaltered during different seasons. In conclusion, the mammary immunity in terms of in vitro activity of milk leukocytes is compromised during summer and hot-humid season in elite crossbred cows; therefore, better care and management should be taken in high-yielding cows during summer and hot-humid season to minimize intramammary infections.  相似文献   
169.
Endocytosis and intracellular sorting of transforming growth factor-β (TGF-β) receptors play an important regulatory role in TGF-β signaling. Two major endocytic pathways, clathrin- and caveolae-mediated endocytosis, have been reported to independently mediate the internalization of TGF-β receptors. In this study, we demonstrate that the clathrin- and caveolae-mediated endocytic pathways can converge during TGF-β receptor endocytic trafficking. By tracking the intracellular dynamics of fluorescently-labeled TGF-β type I receptor (TβRI), we found that after mediating TβRI internalization, certain clathrin-coated vesicles and caveolar vesicles are fused underneath the plasma membrane, forming a novel type of caveolin-1 and clathrin double-positive vesicles. Under the regulation of Rab5, the fused vesicles are targeted to early endosomes and thus deliver the internalized TβRI to the caveolin-1 and EEA1 double-positive early endosomes (caveolin-1-positive early endosomes). We further showed that the caveolin-1-positive early endosomes are positive for Smad3/SARA, Rab11 and Smad7/Smurf2, and may act as a multifunctional device for TGF-β signaling and TGF-β receptor recycling and degradation. Therefore, these findings uncover a novel scenario of endocytosis, the direct fusion of clathrin-coated and caveolae vesicles during TGF-β receptor endocytic trafficking, which leads to the formation of the multifunctional sorting device, caveolin-1-positive early endosomes, for TGF-β receptors.  相似文献   
170.
Surface plasmon resonance was used to investigate the kinetics, affinity, and specificity of binding between anti-Aβ (beta-amyloid) IgG antibodies and oligomeric Aβ. Two factors were needed to accurately characterize the IgG binding kinetics. First, a bivalent model was necessary to properly fit the kinetic association and dissociation sensograms. Second, a high concentration of IgG was necessary to overcome a significant mass transport limitation that existed regardless of oligomer density on the sensor surface. Using high IgG concentrations and bivalent fits, consistent kinetic parameters were found at varying sensor surface ligand densities. A comparison of binding specificity, affinity, and kinetic flux between monoclonal and natural human anti-Aβ IgG antibodies revealed the following findings. First, monoclonal antibodies 6E10 and 4G8 single-site binding affinity is similar between Aβ oligomers and monomers. Second, natural human anti-Aβ IgG binding readily binds Aβ oligomers but does not bind monomers. Third, natural human anti-Aβ IgG binds Aβ oligomers with a higher affinity and kinetic flux than 6E10 and 4G8. Both the current analytical methodology and antibody binding profiles are important for advances in antibody drug development and kinetic biomarker applications for Alzheimer’s disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号