首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4450篇
  免费   439篇
  国内免费   409篇
  5298篇
  2024年   16篇
  2023年   57篇
  2022年   111篇
  2021年   200篇
  2020年   134篇
  2019年   185篇
  2018年   179篇
  2017年   150篇
  2016年   201篇
  2015年   319篇
  2014年   334篇
  2013年   347篇
  2012年   430篇
  2011年   385篇
  2010年   240篇
  2009年   220篇
  2008年   252篇
  2007年   218篇
  2006年   190篇
  2005年   168篇
  2004年   153篇
  2003年   139篇
  2002年   135篇
  2001年   68篇
  2000年   57篇
  1999年   57篇
  1998年   29篇
  1997年   23篇
  1996年   25篇
  1995年   16篇
  1994年   23篇
  1993年   22篇
  1992年   24篇
  1991年   16篇
  1990年   18篇
  1989年   10篇
  1988年   13篇
  1987年   11篇
  1986年   16篇
  1985年   6篇
  1984年   12篇
  1983年   11篇
  1982年   5篇
  1981年   5篇
  1980年   7篇
  1979年   4篇
  1978年   6篇
  1976年   8篇
  1975年   10篇
  1974年   9篇
排序方式: 共有5298条查询结果,搜索用时 9 毫秒
1.
The contribution of electrostriction of the solvent to the stabilization of the negatively charged tetrahedral transition state of a trypsin-catalyzed reaction was probed by means of kinetic studies involving high-pressure and solvent dielectric constant. A good correlation was observed between the increased catalytic efficiency of trypsin and the decreased solvent dielectric constant. When the dielectric constant of the solvents was lowered by 4.68 units, the loss of activation energy and that of free energy of activation were 2.26 kJ/mol and 3.09 kJ/mol, respectively. The activation volume for k(cat) decreased significantly as the dielectric constant of the solvent decreased, indicating that the degree of electrostriction of the solvent around the charged tetrahedral transition state has been enhanced. These observations demonstrate that the increase in the catalytic efficiency of the trypsin reaction with decreasing dielectric constant resulted from the stabilization of electrostatic energy for the formation of an oxyanion hole, and this stabilization was caused by the increase of electrostricted water around the charged tetrahedral transition state. Therefore, we conclude that control of the solvent dielectric constant can stabilize the tetrahedral transition state, and this lowers the activation energy.  相似文献   
2.
Total lung capacity (TLC), inspiratory capacity, functional residual capacity, and deflation stability of prematurely delivered Macaca nemestrina primates were measured serially during development of, and recovery from, hyaline membrane disease (HMD) to relate changes in lung volumes to changes in deflation stability. Gestational age-matched primates that did not develop HMD served as controls. TLC, measured by N2 washout, fell at 2-12 h of age (P less than 0.0001) in animals with HMD and remained lower than controls for at least 48 h (P less than 0.005). However, deflation stability, defined as the fraction of TLC remaining upon deflation to 10 cm H2O, improved from 2 to 12 h of age (P less than 0.001). Postmortem studies confirm the measurements of TLC and deflation stability and provide evidence that interstitial thickening and obstruction of air spaces with debris may be partially responsible for the observed changes in TLC in primates that develop HMD. It has been assumed that TLC is reduced in HMD because of atelectasis from elevated alveolar surface tension, but the sequential measurements in these animals suggest that other mechanisms also contribute.  相似文献   
3.
Summary Immunosurgery is a useful technique for the isolation of inner cell masses from murine blastocysts. Conventionally, rabbit antisera made ad hoc against murine splenic or fetal cells or fibroblasts have been used as antibody sources. We investigated the feasibility of using commercially available rabbit antiserum to murine erythrocytes (anti-RBC) and compared it with rabbit antiserum generated ad hoc to murine L-cells (anti-L-cell). Our results indicate that anti-RBC is at least as effective as anti-L-cell serum for the immunosurgical isolation of inner cell masses, which became either miniblastocysts (later forming outgrowths) or embryoid bodies (undergoing ectoderm-endodermlike differentiation within 48 h). Because anti-RBC is commercially available, the technical modification described herein increases the accessibility of the immunosurgical protocol for the isolation of murine inner cell masses.  相似文献   
4.
We describe the use of column chromatography on the nonpolar adsorbent. Amberlite XAD-2, and on silanized silica gel in the desalting and partial purification of cobalamins. These techniques are both simpler and more versatile than phenol extraction, without sacrificing efficiency. In addition, a solvent system for thin-layer chromatography on silanized silica gel is described which rapidly separates naturally occurring cobalamins.  相似文献   
5.
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.  相似文献   
6.
7.
The immunological characteristics of SARS-CoV spike protein were investigated by administering mice with plasmids encoding various S gene fragments. We showed that the secreting forms of S1, S2 subunits and the N-terminus of S1 subunit (residues 18-495) were capable of eliciting SARS-CoV specific antibodies and the region immediate to N-terminus of matured S1 protein contained an important immunogenic determinant for elicitation of SARS-CoV specific antibodies. In addition, mice immunized with plasmids encoding S1 fragment developed a Th1-mediated antibody isotype switching. Another interesting finding was that mouse antibodies elicited separately by plasmids encoding S1 and S2 subunits cooperatively neutralized SARS-CoV but neither the S1 nor S2 specific antibodies did, suggesting the possible role of both S1 and S2 subunits in host cell docking and entry. These results provide insights into understanding the immunological characteristics of spike protein and the development of subunit vaccines against SARS-CoV.  相似文献   
8.
Thapa A  Woo ER  Chi EY  Sharoar MG  Jin HG  Shin SY  Park IS 《Biochemistry》2011,50(13):2445-2455
Polymerization of monomeric amyloid-β peptides (Aβ) into soluble oligomers and insoluble fibrils is one of the major pathways triggering the pathogenesis of Alzheimer's disease (AD). Using small molecules to prevent the polymerization of Aβ peptides can, therefore, be an effective therapeutic strategy for AD. In this study, we investigate the effects of mono- and biflavonoids in Aβ42-induced toxicity and fibrillogenesis and find that the biflavonoid taiwaniaflavone (TF) effectively and specifically inhibits Aβ toxicity and fibrillogenesis. Compared to TF, the monoflavonoid apigenin (AP) is less effective and less specific. Our data show that differential effects of the mono- and biflavonoids in Aβ fibrillogenesis correlate with their varying cytoprotective efficacies. We also find that other biflavonoids, namely, 2',8'-biapigenin, amentoflavone, and sumaflavone, can also effectively inhibit Aβ toxicity and fibrillogenesis, implying that the participation of two monoflavonoids in a single biflavonoid molecule enhances their activity. Biflavonoids, while strongly inhibiting Aβ fibrillogenesis, accumulate nontoxic Aβ oligomeric structures, suggesting that these are off-pathway oligomers. Moreover, TF abrogates the toxicity of preformed Aβ oligomers and fibrils, indicating that TF and other biflavonoids may also reduce the toxicity of toxic Aβ species. Altogether, our data clearly show that biflavonoids, possibly because of the possession of two Aβ binders separated by an appropriate size linker, are likely to be promising therapeutics for suppressing Aβ toxicity.  相似文献   
9.
Chick embryos grown in ex ovo culture by the modified Cornish pasty method reported in Nagai, Lin and Sheng in this issue.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号