首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   15篇
  185篇
  2024年   1篇
  2023年   13篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   7篇
  2018年   6篇
  2017年   7篇
  2016年   4篇
  2015年   11篇
  2014年   12篇
  2013年   13篇
  2012年   12篇
  2011年   4篇
  2010年   5篇
  2009年   9篇
  2008年   6篇
  2007年   14篇
  2006年   5篇
  2005年   7篇
  2004年   8篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1984年   1篇
  1979年   1篇
  1977年   1篇
  1963年   1篇
排序方式: 共有185条查询结果,搜索用时 9 毫秒
41.
The oncofetal H19 gene transcribes a long non-coding RNA(lncRNA) that is essential for tumor growth. Here we found that numerous established inducers of epithelial to mesenchymal transition(EMT) also induced H19/miR-675 expression. Both TGF-β and hypoxia concomitantly induced H19 and miR-675 with the induction of EMT markers. We identified the PI3K/AKT pathway mediating the inductions of Slug, H19 RNA and miR-675 in response to TGF-β treatment, while Slug induction depended on H19 RNA. In the EMT induced multidrug resistance model, H19 level was also induced. In a mouse breast cancer model, H19 expression was tightly correlated with metastatic potential. In patients, we detected high H19 expression in all common metastatic sites tested, regardless of tumor primary origin. H19 RNA suppressed the expression of E-cadherin protein. H19 up-regulated Slug expression concomitant with the suppression of E-cadherin protein through a mechanism that involved miR-675. Slug also up-regulated H19 expression and activated its promoter. Altogether, these results may support the existence of a positive feedback loop between Slug and H19/miR-675, that regulates E-cadherin expression. H19 RNA enhanced the invasive potential of cancer cells in vitro and enhanced tumor metastasis in vivo. Additionally, H19 knockdown attenuated the scattering and tumorigenic effects of HGF/SF. Our results present novel mechanistic insights into a critical role for H19 RNA in tumor progression and indicate a previously unknown link between H19/miR-675, Slug and E-cadherin in the regulation of cancer cell EMT programs.  相似文献   
42.
43.
In atherosclerotic lesions, macrophages are transformed into foam cells accumulating modified low density lipoproteins (LDL) via the scavenger receptor pathway. We have investigated the effects of carboxymethylated beta-1,3-glucan (CMG) on acetylated LDL (AcLDL) metabolism in murine peritoneal macrophages in vitro and upon the clearance of AcLDL by rat liver in vivo. In cultured murine peritoneal macrophages, CMG reduced substantially the AcLDL-induced synthesis of cholesteryl esters, decreased the binding and degradation of [125I]-AcLDL in a dose-dependent manner with complete inhibition at 20–30 nM , but had no effect on the binding and degradation of native [125I]–LDL. In contrast, other polysaccharides studied, namely zymosan, lipopolysaccharide, non-modified glucan and mannan Rhodexman, had a slight effect at concentrations significantly exceeding the concentrations of CMG. [125I]-AcLDL injected intravenously into rats was cleared from the blood with a half-life of 3.7 min. About 56 per cent of the label of injected [125I]-AcLDL was recovered in the liver 15 min after administration. Co-injection of the labelled AcLDL with CMG (25 mg kg?1 b.w.) decreased the rate of AcLDL clearance so that the half-life increased to 6.0 min. Injections of CMG (25 mg kg?1 b.w.) 48 and 24 h before the determination increased the rate of [125I]-AcLDL clearance (with a half-life of about 2.3 min) and increased the uptake of AcLDL by the liver. We suggest that CMG competed with AcLDL for scavenger receptors in vitro and in vivo and repeated CMG injections before the measurements of AcLDL resulted in the induction of scavenger receptor function.  相似文献   
44.
Lung disease is a leading cause of death and likely to become an epidemic given increases in pollution and smoking worldwide. Advances in stem cell therapy may alleviate many of the symptoms associated with lung disease and induce alveolar repair in adults. Concurrent with the ongoing search for stem cells applicable for human treatment, precise delivery and homing (to the site of disease) must be reassured for successful therapy. Here, I report that stem cells can safely be instilled via the trachea opening a non-stop route to the lung. This method involves a skin incision, caudal insertion of a cannula into and along the tracheal lumen, and injection of a stem cell vehicle mixture into airways of the lung. A broad range of media solutions and stabilizers can be instilled via tracheotomy, resulting in the ability to deliver a wider range of cell types. With alveolar epithelium confining these cells to the lumen, lung expansion and negative pressure during inhalation may also assist in stem cell integration. Tracheal delivery of stem cells, with a quick uptake and the ability to handle a large range of treatments, could accelerate the development of cell-based therapies, opening new avenues for treatment of lung disease.  相似文献   
45.
The dynamics of activity in interactive neural populations is simulated by the networks of Wilson-Cowan oscillators. Two extreme cases of connection architectures in the networks are considered: (1) 1D and 2D regular and homogeneous grids with local connections and (2) sparse random coupling. Propagating waves in the network have been found under the stationary external input and the regime of partial synchronization has been obtained for the periodic input. It has been shown that in the case of random coupling about 60% of neural populations demonstrate oscillatory activity and some of these oscillations are synchronous. The role of different types of dynamics in information processing is discussed. In particular, we discuss the regime of partial synchronization in the context of cortical microcircuits.  相似文献   
46.
Drosophila dachshund is a critical regulator of eye, brain, and limb formation. Vertebrate homologs, Dach1 and Dach2, are expressed in the developing retina, brain, and limbs, suggesting functional conservation of the dachshund/Dach gene family. Dach1 mutants die postnatally, but exhibit grossly normal development. Here we report the generation of Dach2 mutant mice. Although deletion of Dach2 exon 1 results in abrogation of RNA expression, Dach2 mutants are viable and fertile. Histochemical analysis reveals grossly normal Dach2 mutant eye development. In addition, a battery of neurological assays failed to yield significant differences in behavior between Dach2 mutants and controls. We discuss these findings in the light of published observations of DACH2 mutations in the human population. Finally, to test the functional conservation hypothesis, we generated Dach2; Dach1 double mutant mice. Dach double mutants die after birth, similar to Dach1 homozygotes. However, unlike Drosophila dachshund mutants that lack eyes and exhibit leg truncations, the eyes and limbs of Dach double mutants are present, suggesting differences between Dach and dachshund gene function during embryonic eye and limb formation.  相似文献   
47.
Climate warming leads to widespread permafrost thaw with a fraction of the thawed permafrost carbon (C) being released as carbon dioxide (CO2), thus triggering a positive permafrost C-climate feedback. However, large uncertainty exists in the size of this model-projected feedback, partly owing to the limited understanding of permafrost CO2 release through the priming effect (i.e., the stimulation of soil organic matter decomposition by external C inputs) upon thaw. By combining permafrost sampling from 24 sites on the Tibetan Plateau and laboratory incubation, we detected an overall positive priming effect (an increase in soil C decomposition by up to 31%) upon permafrost thaw, which increased with permafrost C density (C storage per area). We then assessed the magnitude of thawed permafrost C under future climate scenarios by coupling increases in active layer thickness over half a century with spatial and vertical distributions of soil C density. The thawed C stocks in the top 3 m of soils from the present (2000–2015) to the future period (2061–2080) were estimated at 1.0 (95% confidence interval (CI): 0.8–1.2) and 1.3 (95% CI: 1.0–1.7) Pg (1 Pg = 1015 g) C under moderate and high Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5, respectively. We further predicted permafrost priming effect potential (priming intensity under optimal conditions) based on the thawed C and the empirical relationship between the priming effect and permafrost C density. By the period 2061–2080, the regional priming potentials could be 8.8 (95% CI: 7.4–10.2) and 10.0 (95% CI: 8.3–11.6) Tg (1 Tg = 1012 g) C year−1 under the RCP 4.5 and RCP 8.5 scenarios, respectively. This large CO2 emission potential induced by the priming effect highlights the complex permafrost C dynamics upon thaw, potentially reinforcing permafrost C-climate feedback.  相似文献   
48.
Carbon use efficiency (CUE) is being intensively applied to quantify carbon (C) cycling processes from microbial cell to global scales. Energy use efficiency (EUE) is at least as important as the CUE because (i) microorganisms use organic C mainly as an energy source and not as elemental C per se, and (ii) microbial growth and maintenance are limited by energy, but not by C as a structural element. We conceptualize and review the importance of EUE by soil microorganisms and focus on (i) the energy content in organic compounds depending on the nominal oxidation state of carbon (NOSC), (ii) approaches to assess EUE, (iii) similarities and differences between CUE and EUE, and (iv) discuss mechanisms responsible for lower EUE compared to CUE. The energy content per C atom (enthalpy of combustion, the total energy stored in a compound) in organic compounds is very closely (R2 = 0.98) positively related to NOSC and increases by 108 kJ mol−1 C per one NOSC unit. For the first time we assessed the NOSC of microbial biomass in soil (−0.52) and calculated the corresponding energy content of −510 kJ mol−1 C. We linked CUE and EUE considering the NOSC of microbial biomass and element compositions of substrates utilized by microorganisms. The mean microbial EUE (0.32–0.35) is 18% lower than CUE (0.41) using glucose as a substrate. This definitely indicates that microbial growth is limited by energy relative to C. Based on the comparison of a broad range of processes of C and energy utilization for cell growth and maintenance, as well as database of experimental CUE from various compounds, we clearly explained five mechanisms and main factors why EUE is lower than CUE. The two main mechanisms behind lower EUE versus CUE are: (i) microbial recycling: C can be microbially recycled, whereas energy is always utilized only once, and (ii) chemical reduction of organic and inorganic compounds: Energy is used for reduction, which is ongoing without C utilization.  相似文献   
49.
50.
We develop and study two neural network models of perceptual alternations. Both models have a star-like architecture of connections with a central element connected to a set of peripheral elements. A particular perception is simulated in terms of partial synchronization between the central element and some sub-group of peripheral elements. The first model is constructed from phase oscillators and the mechanism of perceptual alternations is based on chaotic intermittency under fixed parameter values. Similar to experimental evidence, the distribution of times between perceptual alternations is represented by the gamma distribution. The second model is built of spiking neurons of the Hodgkin–Huxley type. The mechanism of perceptual alternations is based on plasticity of inhibitory synapses which increases the inhibition from the central unit to the neural assembly representing the current percept. As a result another perception is formed. Simulations show that the second model is in good agreement with behavioural data on switching times between percepts of ambiguous figures and with experimental results on binocular rivalry of two and four percepts. This article is part of a special issue on Neuronal Dynamics of Sensory Coding. This special issue is in honour of Professor Pepe Segundo who is one of the pioneers in the study of neural coding. Pepe has been an active participant in many Neural Coding Workshops sharing his great knowledge and experience of research in this field. I (R. Borisyuk) was very happy to meet Pepe for the first time in Prague when attending the first Neural Coding Workshop in 1995. From that time we regularly met at Neural Coding Workshops and these meetings have always been very stimulating and fruitful for my research. Remarkably, the first paper I studied at the beginning of my scientific career was a seminal paper by Moore et al. (1970). For me, this paper provided a great opportunity to learn the basic statistical techniques for the analysis of multiple spike trains and neural coding. According to the Institute of Scientific Information, this paper has been cited 380 times! This exciting paper has inspired my research into the synaptic and functional connectivity of neural circuits derived from spike-train recordings (Borisyuk et al. 1985; Stuart et al. 2005) and guided my search for new ideas on neural coding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号