首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   13篇
  2023年   3篇
  2021年   1篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2013年   3篇
  2012年   7篇
  2011年   2篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   5篇
  2004年   6篇
  2003年   2篇
  2000年   1篇
  1999年   2篇
  1992年   3篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   7篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1979年   2篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1973年   5篇
  1972年   4篇
  1971年   2篇
  1970年   4篇
  1969年   4篇
  1968年   2篇
  1967年   4篇
  1966年   4篇
排序方式: 共有122条查询结果,搜索用时 171 毫秒
31.
The Vam7p t-SNARE is an essential component of the vacuole fusion machinery that mediates membrane trafficking and protein sorting in yeast. Vam7p is recruited to vacuoles by its N-terminal PX domain that specifically recognizes PtdIns(3)P in the bilayers, however the precise mechanism of membrane anchoring remains unclear. Here we describe a molecular basis for membrane targeting and penetration by the Vam7p PX domain based on structural and quantitative analysis of its interactions with lipids and micelles. Our results derived from in vitro binding measurements using NMR, monolayer surface tension experiments and mutagenesis reveal a multivalent membrane docking mechanism involving specific PtdIns(3)P recognition that is facilitated by electrostatic interactions and accompanying hydrophobic insertion. Both the hydrophobic and electrostatic components enhance the Vam7p PX domain association with PtdIns(3)P-containing membranes. The inserting Val(70), Leu(71), and Trp(75) residues located next to the PtdIns(3)P binding pocket are surrounded by a basic patch, which is involved in nonspecific electrostatic contacts with acidic lipids, such as PtdSer. Substitution of the insertion residues significantly reduces the binding and penetrating power of the Vam7p PX domain and leads to cytoplasmic redistribution of the EGFP-tagged protein. The affinities of the PX domain for PtdIns(3)P and other lipids reveal a remarkable synergy within the multivalent complex that stably anchors Vam7p at the vacuolar membrane.  相似文献   
32.
33.
B S Setty 《Endokrinologie》1979,74(1):100-117
The structural and functional integrity of the epididymis, the acquisition of fertilizing ability by spermatozoa and their viability within the epididymis are androgen dependent phenomena. Although the precise mechanism by which sperm maturation and viability in the epididymis are brought about by androgen are not clearly understood, it is generally held that specific epididymal secretions produced under the influence of androgen affect these events. Though the spermatozoa appear to remain viable in a low androgen environment, sperm maturation requires a relatively high androgen environment. Against this background the potentiality of antiandrogens as extragonadal antifertility agents has been discussed. Studies with steroidal and nonsteroidal antiandrogens have revealed that in adult animals the secretory activity of the epididymis, as evidenced by the level of glycerylphosphorylcholine, either remains unaffected or is stimulated under their influence. These studies have further indicated that the extragonadal antifertility action of antiandrogens will depend upon their ability to (1) lower the testicular androgen synthesis and/or androgen binding protein, which possibly serves as a carrier of androgen from the testis to epididymis; (2) to lower local androgen synthesis as a result of reduced levels of circulating androgen, and (3) to inhibit 5 alpha-reduction of testosterone to dihydrotestosterone and/or to inhibit androgen binding to receptors. Success in the rational development of new antifertility agents for male which will act by controlling epididymal function will depend upon a clear understanding of the factors that regulate epididymal secretion and the role of epididymal secretions in sperm maturation and survival.  相似文献   
34.
We evaluated 15-hydroxyeicosatetraenoic acid (15-HETE), a major arachidonic acid product of vascular endothelium and leukocytes, for its effect on neovascularization. In a modified Boyden chamber assay, 15-HETE (10-7 M) stimulated human retinal microvessel endothelial cell migration by 42 +/- 10% (mean +/- S.E.M., p less than 0.01). 12-HETE, a major arachidonic acid metabolite of platelets, had no such effect. Further studies in the rabbit corneal pocket assay revealed that 15-HETE stimulated neovascularization in vivo. Concentrations at which the in vivo effects were observed are within the range generated by several cell types and are achievable in human serum. 15-HETE stimulation of human endothelial cell migration in vitro and neovascularization in vivo suggests that it may play a role in vasoproliferative disorders.  相似文献   
35.
Proper microtubule organization is essential for cellular processes such as organelle positioning during interphase and spindle formation during mitosis. The fission yeast Schizosaccharomyces pombe presents a good model for understanding microtubule organization. We identify fission yeast ase1p, a member of the conserved ASE1/PRC1/MAP65 family of microtubule bundling proteins, which functions in organizing the spindle midzone during mitosis. Using fluorescence live cell imaging, we show that ase1p localizes to sites of microtubule overlaps associated with microtubule organizing centers at both interphase and mitosis. ase1Delta mutants fail to form overlapping antiparallel microtubule bundles, leading to interphase nuclear positioning defects, and premature mitotic spindle collapse. FRAP analysis revealed that interphase ase1p at overlapping microtubule minus ends is highly dynamic. In contrast, mitotic ase1p at microtubule plus ends at the spindle midzone is more stable. We propose that ase1p functions to organize microtubules into overlapping antiparallel bundles both in interphase and mitosis and that ase1p may be differentially regulated through the cell cycle.  相似文献   
36.
The mechanism for forming linear microtubule (MT) arrays in cells such as neurons, polarized epithelial cells, and myotubes is not well understood. A simpler bipolar linear array is the fission yeast interphase MT bundle, which in its basic form contains two MTs that are bundled at their minus ends. Here, we characterize mto2p as a novel fission yeast protein required for MT nucleation from noncentrosomal gamma-tubulin complexes (gamma-TuCs). In interphase mto2Delta cells, MT nucleation was strongly inhibited, and MT bundling occurred infrequently and only when two MTs met by chance in the cytoplasm. In wild-type 2, we observed MT nucleation from gamma-TuCs bound along the length of existing MTs. We propose a model on how these nucleation events can more efficiently drive the formation of bipolar MT bundles in interphase. Key to the model is our observation of selective antiparallel binding of MTs, which can both explain the generation and spatial separation of multiple bipolar bundles.  相似文献   
37.
Myristoylation of ARF family GTPases is required for their association with Golgi and endosomal membranes, where they regulate protein sorting and the lipid composition of these organelles. The Golgi-localized ARF-like GTPase Arl3p/ARP lacks a myristoylation signal, indicating that its targeting mechanism is distinct from myristoylated ARFs. We demonstrate that acetylation of the N-terminal methionine of Arl3p requires the NatC N(alpha)-acetyltransferase and that this modification is required for its Golgi localization. Chemical crosslinking and fluorescence microscopy experiments demonstrate that localization of Arl3p also requires Sys1p, a Golgi-localized integral membrane protein, which may serve as a receptor for acetylated Arl3p.  相似文献   
38.
39.
40.
Kinetic analyses were performed to understand the mechanism of hyperoxic induced inhibition of prostacyclin synthesis by human umbilical arteries. Brief exposure of arterial segments to oxygen resulted in over 30% decrease in Vmax of cyclooxygenase in treated vessels. In contrast, cyclooxygenase from hypoxic arterial segments showed approximately a 49% increase in Vmax. There were no significant differences in apparent Km values. These studies suggest that the decreased production of prostacyclin by hyperoxic tissue is due to cyclooxygenase inactivation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号