首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20623篇
  免费   1136篇
  国内免费   1314篇
  23073篇
  2024年   195篇
  2023年   285篇
  2022年   666篇
  2021年   1039篇
  2020年   779篇
  2019年   887篇
  2018年   827篇
  2017年   613篇
  2016年   849篇
  2015年   1178篇
  2014年   1434篇
  2013年   1533篇
  2012年   1840篇
  2011年   1526篇
  2010年   957篇
  2009年   811篇
  2008年   958篇
  2007年   858篇
  2006年   754篇
  2005年   660篇
  2004年   571篇
  2003年   510篇
  2002年   424篇
  2001年   373篇
  2000年   324篇
  1999年   334篇
  1998年   197篇
  1997年   216篇
  1996年   194篇
  1995年   198篇
  1994年   164篇
  1993年   113篇
  1992年   172篇
  1991年   119篇
  1990年   107篇
  1989年   85篇
  1988年   57篇
  1987年   79篇
  1986年   41篇
  1985年   39篇
  1984年   35篇
  1983年   22篇
  1982年   23篇
  1981年   15篇
  1980年   8篇
  1979年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
SnoN is an important negative regulator of transforming growth factor beta signaling through its ability to interact with and repress the activity of Smad proteins. It was originally identified as an oncoprotein based on its ability to induce anchorage-independent growth in chicken embryo fibroblasts. However, the roles of SnoN in mammalian epithelial carcinogenesis have not been well defined. Here we show for the first time that SnoN plays an important but complex role in human cancer. SnoN expression is highly elevated in many human cancer cell lines, and this high level of SnoN promotes mitogenic transformation of breast and lung cancer cell lines in vitro and tumor growth in vivo, consistent with its proposed pro-oncogenic role. However, this high level of SnoN expression also inhibits epithelial-to-mesenchymal transdifferentiation. Breast and lung cancer cells expressing the shRNA for SnoN exhibited an increase in cell motility, actin stress fiber formation, metalloprotease activity, and extracellular matrix production as well as a reduction in adherens junction proteins. Supporting this observation, in an in vivo breast cancer metastasis model, reducing SnoN expression was found to moderately enhance metastasis of human breast cancer cells to bone and lung. Thus, SnoN plays both pro-tumorigenic and antitumorigenic roles at different stages of mammalian malignant progression. The growth-promoting activity of SnoN appears to require its ability to bind to and repress the Smad proteins, while the antitumorigenic activity can be mediated by both Smad-dependent and Smad-independent pathways and requires the activity of small GTPase RhoA. Our study has established the importance of SnoN in mammalian epithelial carcinogenesis and revealed a novel aspect of SnoN function in malignant progression.  相似文献   
82.
A novel series of oxa-steroids 6 derived from (8S, 13S, 14R)-7-oxa-estra-4,9-diene-3,17-dione 1 have been synthesized and identified as potent and selective progesterone receptor antagonists. These novel oxa-steroids showed similar potency to mifepristone. Preliminary SAR study resulted in the most potent 17-phenylethynyl oxa-steroid 6i wih an IC(50) of 1.4nM. In contrast to the equipotent mifepristone toward the progesterone receptor (PR) and glucocorticoid receptor (GR), compound 6i had over 200-fold selectivity for PR over GR.  相似文献   
83.
C. Fu    D. Li    W. Hu    Y. Wang  † Z. Zhu   《Journal of fish biology》2007,70(2):347-361
The growth and energy budget for F2‘all‐fish’ growth hormone gene transgenic common carp Cyprinus carpio of two body sizes were investigated at 29·2° C for 21 days. Specific growth rate, feed intake, feed efficiency, digestibility coefficients of dry matter and protein, gross energy intake (IE), and the proportion of IE utilized for heat production (HE) were significantly higher in the transgenics than in the controls. The proportion of IE directed to waste products [faecal energy (FE) and excretory energy loss (ZE+UE) where ZE is through the gills and UE through the kidney], and the proportion of metabolizable energy (ME) for recovered energy (RE) were significantly lower in the transgenics than in the controls. The average energy budget equation of transgenic fish was as follows: 100 IE= 19·3 FE+ 6·0 (ZE+UE) + 45·2 HE+ 29·5 RE or 100 ME= 60·5 HE+ 39·5 RE. The average energy budget equation of the controls was: 100 IE= 25·2 FE+ 7·4 (ZE+UE) + 35·5 HE+ 31·9 RE or 100 ME= 52·7 HE+ 47·3 RE. These findings indicate that the high growth rate of ‘all‐fish’ transgenic common carp relative to their non‐transgenic counterparts was due to their increased feed intake, reduced lose of waste productions and improved feed efficiency. The benefit of the increased energy intake by transgenic fish, however, was diminished by their increased metabolism.  相似文献   
84.
Abstract  Nodulation is the predominant cellular defense reaction to bacterial challenges in insects. In this study, third instar larvae of Chrysomya megacephala were injected with bacteria, Escherichia coli K 12 (106 CFU/mL, 2 μL), immediately prior to injection of inhibitors of eicosanoid biosynthesis, which sharply reduced nodulation response. Test larvae were treated with specific inhibitors of phospholipase A2 (dexamethasone), cyclo-oxygenase (indomethacin, ibuprofen and piroxicam), dual cyclo-oxygenase/lipoxygenase (phenidone) and lipoxygenase (esculetin) and these reduced nodulation except esculetin. The influence of bacteria was obvious within 2 h of injection (5 nodules/larva), and increased to a maximum after 8 h (with 15 nodules/larva), and then significantly reduced over 24 h (9 nodules/larva). The inhibitory influence of dexamethasone was apparent within 2 h of injection (4 vs. 5 nodules/larva), and nodulation was significantly reduced, compared to control, over 24 h (5 vs. 8 nodules/larva). Increased dosages of ibuprofen, indomethacin, piroxicam and phenidone led to decreased numbers of nodules. Nodules continued to exist during the pupal stage. However, the effects of dexamethasone were reversed by treating bacteria-injected insects with an eicosanoid-precursor polyunsaturated fatty acid, arachidonic acid. These findings approved our view that eicosanoid can mediate cellular defense mechanisms in response to bacterial infections in another Dipteran insect C. megacephala .  相似文献   
85.
Based on tetrapeptide AVPI, we were able to design and synthesize a new simplified scaffold to inhibit the BIR3 domain of the XIAP protein at low micromolar range. The uncomplicated synthesis and the binding activity of the molecule disclosed here represent an attractive alternative to develop new compounds targeting the protein–protein interaction of XIAP/caspase9.  相似文献   
86.
The gene mutated in Bloom''s syndrome, BLM, is important in the repair of damaged replication forks, and it has both pro- and anti-recombinogenic roles in homologous recombination (HR). At damaged forks, BLM interacts with RAD51 recombinase, the essential enzyme in HR that catalyzes homology-dependent strand invasion. We have previously shown that defects in BLM modification by the small ubiquitin-related modifier (SUMO) cause increased γ-H2AX foci. Because the increased γ-H2AX could result from defective repair of spontaneous DNA damage, we hypothesized that SUMO modification regulates BLM''s function in HR repair at damaged forks. To test this hypothesis, we treated cells that stably expressed a normal BLM (BLM+) or a SUMO-mutant BLM (SM-BLM) with hydroxyurea (HU) and examined the effects of stalled replication forks on RAD51 and its DNA repair functions. HU treatment generated excess γ-H2AX in SM-BLM compared to BLM+ cells, consistent with a defect in replication-fork repair. SM-BLM cells accumulated increased numbers of DNA breaks and were hypersensitive to DNA damage. Importantly, HU treatment failed to induce sister-chromatid exchanges in SM-BLM cells compared to BLM+ cells, indicating a specific defect in HR repair and suggesting that RAD51 function could be compromised. Consistent with this hypothesis, RAD51 localization to HU-induced repair foci was impaired in SM-BLM cells. These data suggested that RAD51 might interact noncovalently with SUMO. We found that in vitro RAD51 interacts noncovalently with SUMO and that it interacts more efficiently with SUMO-modified BLM compared to unmodified BLM. These data suggest that SUMOylation controls the switch between BLM''s pro- and anti-recombinogenic roles in HR. In the absence of BLM SUMOylation, BLM perturbs RAD51 localization at damaged replication forks and inhibits fork repair by HR. Conversely, BLM SUMOylation relieves its inhibitory effects on HR, and it promotes RAD51 function.  相似文献   
87.

Background

Aortocaval fistula (AV) in rat is a unique model of volume-overload congestive heart failure and cardiac hypertrophy. Living donor kidney transplantation is regarded as beneficial to allograft recipients and not particularly detrimental to the donors. Impact of AV on animals with mild renal dysfunction is not fully understood. In this study, we explored the effects of AV in unilateral nephrectomized (UNX) rats.

Methods

Adult male Sprague-Dawley (SD) rats were divided into Sham (n = 10), UNX (right kidney remove, n = 10), AV (AV established between the levels of renal arteries and iliac bifurcation, n = 18) and UNX+AV (AV at one week after UNX, n = 22), respectively. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, fractional excretion of sodium, albuminuria, plasma creatinine, and cystatin C. Focal glomerulosclerosis (FGS) incidence was evaluated by renal histology. Cardiac function was measured by echocardiography and hemodynamic measurements.

Results

UNX alone induced compensatory left kidney enlargement, increased plasma creatinine and cystatin C levels, and slightly reduced glomerular filtration rate and increased FGS. AV induced significant cardiac enlargement and hypertrophy and reduced cardiac function and increased FGS, these changes were aggravated in UNX+AV rats.

Conclusions

Although UNX only induces minor renal dysfunction, additional chronic volume overload placement during the adaptation phase of the remaining kidney is associated with aggravated cardiac dysfunction and remodeling in UNX rats, suggesting special medical care is required for UNX or congenital monokidney subjects in case of chronic volume overload as in the case of pregnancy and hyperthyroidism to prevent further adverse cardiorenal events in these individuals.  相似文献   
88.
Wang F  Liu S  Wu S  Zhu Q  Ou G  Liu C  Wang Y  Liao Y  Sun Z 《Cellular immunology》2012,272(2):251-258
TREM-1 is a recently discovered receptor expressed on neutrophils and macrophages. Blocking of TREM-1 signaling improves the survival of mice with bacterial sepsis. However, the precise mechanism by which TREM-1 modulates the inflammatory responses is poorly defined. In this study, we investigated the role of TREM-1 in Pseudomonas aeruginosa-induced peritonitis. Our results showed that TREM-1 was not expressed on lymphocytes but emerged on the cell surface of neutrophils and peritoneal macrophages. Blockade of TREM-1 signaling significantly prolonged survival of mice with P. aeruginosa-induced peritonitis. However, blocking TREM-1 signaling had no effect on macrophage phagocytosis in vitro. Interestingly, the expression of the costimulatory molecules CD40 and CD86 on macrophages was significantly decreased after blocking TREM-1 signaling. Furthermore, interfering with TREM-1 engagement led to significant reduction of pro-inflammatory mediators such as IL-1, TNF-α, MCP-1 and IFN-γ. Therefore, our results showed that TREM-1 could be a potential therapeutic target for bacterial sepsis.  相似文献   
89.
The serotonin transporter (SERT) terminates neurotransmission by removing serotonin from the synaptic cleft. In addition, it is the site of action of antidepressants (which block the transporter) and of amphetamines (which induce substrate efflux). The interaction energies involved in binding of such compounds to the transporter are unknown. Here, we used atomic force microscopy (AFM) to probe single molecular interactions between the serotonin transporter and MFZ2-12 (a potent cocaine analog) in living CHOK1 cells. For the AFM measurements, MFZ2-12 was immobilized on AFM tips by using a heterobifunctional cross-linker. By varying the pulling velocity in force distance cycles drug-transporter complexes were ruptured at different force loadings allowing for mapping of the interaction energy landscape. We derived chemical rate constants from these recordings and compared them with those inferred from inhibition of transport and ligand binding: koff values were in good agreement with those derived from uptake experiments; in contrast, the kon values were scaled down when determined by AFM. Our observations generated new insights into the energy landscape of the interaction between SERT and inhibitors. They thus provide a useful framework for molecular dynamics simulations by exploring the range of forces and energies that operate during the binding reaction.  相似文献   
90.
To gain insight into the role of the NF1 (Neurofibromatosis type 1) gene during neural development and in tumorigenesis, we have utilized the bacteriophage P1, Cre/loxP system to generate a conditional allele at the NF1 locus (NF1 flox) that permits temporal and spatial ablation of function through Cre‐mediated recombination. We have been using these mice to assess the scope of NF1 requirement in distinct cell types. At the center of this approach is to identify the cells that give origin to the tumors most frequently found in NF1 patients: neurofibromas, neurofibrosarcomas, and astrocytomas. We have hypothesized that specific stem cells must lose NF1 by LOH to begin this process. I will discuss the consequences of NF1 loss in neurons, Schwann cells, and neural precursors. Distinct tumor phenotypes appear in each case. In malignant tumors, our mouse models indicate that the p53 pathway must also become mutated to cooperate with loss of NF1. Additionally, we have genetic evidence that the haploin‐sufficient state is essential for tumor appearance. These data suggest that profilactic therapies preceding tumor appearance should be considered for NF1. Acknowledgements: Funded by NINDS, NNFF, and DOD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号