首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4929篇
  免费   544篇
  国内免费   811篇
  2024年   24篇
  2023年   117篇
  2022年   204篇
  2021年   337篇
  2020年   250篇
  2019年   316篇
  2018年   251篇
  2017年   186篇
  2016年   302篇
  2015年   372篇
  2014年   432篇
  2013年   456篇
  2012年   472篇
  2011年   470篇
  2010年   282篇
  2009年   232篇
  2008年   276篇
  2007年   204篇
  2006年   165篇
  2005年   122篇
  2004年   122篇
  2003年   118篇
  2002年   110篇
  2001年   78篇
  2000年   54篇
  1999年   58篇
  1998年   36篇
  1997年   40篇
  1996年   26篇
  1995年   21篇
  1994年   22篇
  1993年   24篇
  1992年   23篇
  1991年   17篇
  1990年   20篇
  1989年   4篇
  1988年   6篇
  1987年   7篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1950年   1篇
排序方式: 共有6284条查询结果,搜索用时 93 毫秒
151.
d-Aminoacylase catalyzes the conversion of N-acyl-d-amino acids to d-amino acids and fatty acids. The aim of this study was to identify the d-aminoacylase gene from Achromobacter xylosoxidans subsp. denitrificans ATCC 15173 and investigate the biochemical characterization of the enzyme. A previously uncharacterized d-aminoacylase gene (ADdan) from this organism was cloned and sequenced. The open reading frame (ORF) of ADdan was 1467 bp in size encoding a 488-amino acid polypeptide. ADdan, with a high amino acid similarity to N-acyl-d-aspartate amidohydrolase from Alcaligenes A6, showed relatively low sequence similarities to other characterized d-aminoacylases. The recombinant ADdan protein was expressed in Escherichia coli BL21 (DE3) using pET-28a with a T7 promoter. The enzyme was purified in a single chromatographic step using nickel affinity gel column. The molecular mass of the expressed protein, calculated by SDS–PAGE, was about 52 kDa. The purified ADdan showed optimal activity at pH 8.0 and 50 °C, and was stable at pH 6.0–8.0 and up to 45 °C. Its activity was inhibited by Cu2+, Fe2+, Ca2+, Mn2+, Ni2+, Zn2+ and Hg2+, whereas Mg2+ had no significant influence on this recombinant d-aminoacylase. This is the first report on the characterization of d-aminoacylase with activity towards both N-acyl derivatives of neutral d-amino acids and N-acyl-d-aspartate. The characteristics of ADdan could prove to be of interest in industrial production of d-amino acids.  相似文献   
152.
A full set of optimization procedure was applied to the extraction of anti-viral polysaccharides from Duchesnea indica (Andrews) Focke. By Plackett–Burman factorial design, three parameters (extraction time, extraction temperature, and ratio of water to raw material) were identified as significant to the extraction yield. However, no significant parameters had been identified for antiviral activity. A three-level-three-factor Box–Behnken factorial design was then employed to further optimize the extraction condition. The experimental data were fitted to a second-order polynomial equation using multiple regression analysis and also examined using appropriate statistical methods. This led to the construction of a response surface indicating the optimal values for each parameter and response studied. Concerning the extraction yield, an extraction at 98.51?ºC for 6.16 h with a ratio of water to raw material of 30.94 mL/g was found to be optimal. Under the optimized conditions, the experimental yield was 6.430 ± 0.078%, which was well matched with the predicted yield of 6.509%.  相似文献   
153.

Background

Mediating DNA damage-induced apoptosis is an important genome-maintenance function of the mismatch repair (MMR) system. Defects in MMR not only cause carcinogenesis, but also render cancer cells highly resistant to chemotherapeutics, including alkylating agents. To understand the mechanisms of MMR-mediated apoptosis and MMR-deficiency-caused drug resistance, we analyze a model alkylating agent (N-methyl-N’-nitro-N-nitrosoguanidine, MNNG)-induced changes in protein phosphorylation and abundance in two cell lines, the MMR-proficient TK6 and its derivative MMR-deficient MT1.

Results

Under an experimental condition that MNNG-induced apoptosis was only observed in MutSα-proficient (TK6), but not in MutSα-deficient (MT1) cells, quantitative analysis of the proteomic data revealed differential expression and phosphorylation of numerous individual proteins and clusters of protein kinase substrates, as well differential activation of response pathways/networks in MNNG-treated TK6 and MT1 cells. Many alterations in TK6 cells are in favor of turning on the apoptotic machinery, while many of those in MT1 cells are to promote cell proliferation and anti-apoptosis.

Conclusions

Our work provides novel molecular insights into the mechanism of MMR-mediated DNA damage-induced apoptosis.
  相似文献   
154.
Atomic force microscopy (AFM) was used to examine the morphology of live mammalian adherent and suspended cells. Time-lapse AFM was used to record the locomotion dynamics of MCF-7 and Neuro-2a cells. When a MCF-7 cell retracted, many small sawtooth-like filopodia formed and reorganized, and the thickness of cellular lamellipodium increased as the retraction progressed. In elongated Neuro-2a cells, the cytoskeleton reorganized from an irregular to a parallel, linear morphology. Suspended mammalian cells were immobilized by method combining polydimethylsiloxane-fabricated wells with poly-L-lysine electrostatic adsorption. In this way, the morphology of a single live lymphoma cell was imaged by AFM. The experimental results can improve our understanding of cell locomotion and may lead to improved immobilization strategies.  相似文献   
155.
Insects are a group of arthropods and the largest group of animals on Earth,with over one million species described to date.Like other life forms,insects suffer from viruses that cause disease and death.Viruses that are pathogenic to beneficial insects cause dramatic economic losses on agriculture.In contrast,viruses that are pathogenic to insect pests can be exploited as attractive biological control agents.All of these factors have led to an explosion in the amount of research into insect viruses in recent years,generating impressive quantities of information on the molecular and cellular biology of these viruses.Due to the wide variety of insect viruses,a better understanding of these viruses will expand our overall knowledge of their virology.Here,we review studies of several newly discovered RNA insect viruses in China.  相似文献   
156.
Rice white tip nematode, Aphelenchoides besseyi, is a kind of plant parasitic nematodes that cause serious losses in rice and many other crops. Fatty acid and retinoid binding protein (FAR) is a specific protein in nematodes and is related to development, reproduction, infection to the host, and disruption of plant defense reactions, so the inhibition of FAR function is the potential approach to control A. besseyi. The full-length of Ab-far-1 cDNA is 805 bp, including 546 bp of ORF that encodes 181 amino acids. Software analysis revealed that the Ab-FAR-1 was rich in α-helix structure, contained a predicted consensus casein kinase II phosphorylation site and a hydrophobic secretory signal peptide, but did not have glycosylation sites. The Ab-FAR-1 had 52% homology to Gp-FAR-1 protein. The Ab-FAR-1 and Gp-FAR-1 were grouped in the same branch according to the phylogenetic tree. Fluorescence-based ligand binding analysis confirmed that the recombinant Ab-FAR-1 (rAb-FAR-1) bound with the fluorescent analogues 11-((5-dimethylaminonaphthalene-1-sulfonyl) amino) undecannoic acid (DAUDA), cis-parinaric acid and retinol, but the oleic acid would compete with the binding site. Quantitative PCR (qPCR) was used to assess the expression level of Ab-far-1 at different development stages of A. besseyi, the highest expression was found in the females, followed by eggs, juveniles and males. Using in situ hybridization technique, Ab-far-1 mRNA was present in the hypodermis of juveniles and adults, the ovaries of females and the testes of males. When A. besseyi was treated with Ab-far-1 dsRNA for 48 h, the silencing efficiency of Ab-far-1 was the best and the number of nematodes on the carrot was the least. Thus FAR plays important roles in the development and reproduction of nematodes. This study is useful and helpful to figure out a new way to control the plant parasitic nematodes.  相似文献   
157.

Background

The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants.

Principal Findings/Significance

Here we report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae. The cp genome of C. deserticola is greatly reduced both in size (102,657 bp) and in gene content, indicating that all genes required for photosynthesis suffer from gene loss and pseudogenization, except for psbM. The striking difference from other holoparasitic plants is that it retains almost a full set of tRNA genes, and it has lower dN/dS for most genes than another close holoparasitic plant, E. virginiana, suggesting that Cistanche deserticola has undergone fewer losses, either due to a reduced level of holoparasitism, or to a recent switch to this life history. We also found that the rpoC2 gene was present in two copies within C. deserticola. Its own copy has much shortened and turned out to be a pseudogene. Another copy, which was not located in its cp genome, was a homolog of the host plant, Haloxylon ammodendron (Chenopodiaceae), suggesting that it was acquired from its host via a horizontal gene transfer.  相似文献   
158.
Emerging evidence support an important role of reactive oxygen species in various forms of insulin resistance. It is identified that melatonin has antioxidant properties and prevents toxic effects of reactive oxygen species. In this study, we sought to assess the involvement of melatonin in the progression of insulin resistance in response to a high-fat diet (HFD) and to investigate the underlying mechanisms. Male rats were fed with a control diet, a high-fat diet, or a high-fat diet supplemented with melatonin (5 mg kg?1, i.p.) for 10 weeks. Glucose homeostasis, insulin sensitivity, antioxidative potency, and metabolic profiles in the rats were evaluated. Our results showed that a HFD led to increasing body mass, adipose tissue weight, plasma insulin, total cholesterol (TC), triglycerides (TG), free fatty acids (FFA), and decreased HDL-cholesterol (HDL-C) in rats. There was also a significant increase in the level of malondialdehyde (MDA) and decrease in superoxide dismutase (SOD) activity, oxidative stress markers both in the plasma and liver. An enhanced hepatic phosphoenolpyruvate carboxy-kinase (PEPCK) activity and RNA expression were observed. Impaired insulin signaling was evidenced by reducing insulin receptor substrate 2 (IRS2) tyrosine phosphorylation and protein kinase B (PKB) serine phosphorylation in response to insulin. Overactivation of stress-activated protein kinases JNK was also observed in the liver of HFD rats. However, simultaneous administration of melatonin to HFD rats significantly reduced oxidative stress in the system and liver, markedly improved impaired glucose homeostasis, insulin sensitivity, antioxidative potency, metabolic profiles and all the aforesaid adverse changes in HFD rats. Our results demonstrated that anti-oxidative property of melatonin is sufficient to ameliorate the insulin resistance condition, leading to the improvement of glucose homeostasis and the restoration of hepatic insulin signaling in a rat model of HFD-induced insulin resistance.  相似文献   
159.
The study of systems genetics is changing the way the genetic and molecular basis of phenotypic variation, such as disease susceptibility and drug response, is being analyzed. Moreover, systems genetics aids in the translation of insights from systems biology into genetics. The use of systems genetics enables greater attention to be focused on the potential impact of genetic perturbations on the molecular states of networks that in turn affects complex traits. In this study, we developed models to detect allele-specific perturbations on interactions, in which a genetic locus with alternative alleles exerted a differing influence on an interaction. We utilized the models to investigate the dynamic behavior of an integrated molecular network undergoing genetic perturbations in yeast. Our results revealed the complexity of regulatory relationships between genetic loci and networks, in which different genetic loci perturb specific network modules. In addition, significant within-module functional coherence was found. We then used the network perturbation model to elucidate the underlying molecular mechanisms of individual differences in response to 100 diverse small molecule drugs. As a result, we identified sub-networks in the integrated network that responded to variations in DNA associated with response to diverse compounds and were significantly enriched for known drug targets. Literature mining results provided strong independent evidence for the effectiveness of these genetic perturbing networks in the elucidation of small-molecule responses in yeast.  相似文献   
160.

Background

A recent genome-wide association study identified STK39as a candidate gene for blood pressure (BP) in Europeans. Subsequently, several studies have attempted to replicate the association across different ethnic populations. However, the results have been inconsistent.

Objective and Methods

We performed a meta-analysis to elucidate the association between the STK39 rs3754777 polymorphism (or proxy) and hypertension. Published literature from PubMed and Embase databases were retrieved and pooled odds ratio (OR) with 95% confidence interval (CI) was calculated using fixed- or random-effects model.

Results

Using appropriate inclusion/exclusion criteria, we identified 10 studies that included 21, 863 hypertensive cases and 24, 480 controls from different ethnicities. The meta-analysis showed a significant association of STK39 rs3754777 variant with hypertension (OR = 1.10, 95%CI = 1.06–1.15, p = 7.95×10−6). Further subgroup analysis by ethnicity suggested that the association was significant in Europeans (OR = 1.08, 95% CI = 1.03–1.14, p = 0.002) and in East Asians (OR = 1.16, 95%CI = 1.07–1.25, p = 4.34×10−4), but not in Africans (OR = 1.01, 95%CI 0.80–1.27, p = 0.932). We further confirmed the positive association by sensitivity analysis. No publication bias was detected (Begg’s test, p = 0.721; Egger’s test, p = 0.744).

Conclusions

The present meta-analysis confirms the significant association of STK39 polymorphism with susceptibility to hypertension in Europeans and East Asians. Future studies should include gene–gene and gene–environment interactions to investigate the identified association.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号