首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   719篇
  免费   74篇
  2022年   6篇
  2021年   18篇
  2020年   4篇
  2019年   14篇
  2018年   15篇
  2017年   10篇
  2016年   16篇
  2015年   43篇
  2014年   42篇
  2013年   55篇
  2012年   78篇
  2011年   64篇
  2010年   34篇
  2009年   32篇
  2008年   41篇
  2007年   44篇
  2006年   40篇
  2005年   38篇
  2004年   32篇
  2003年   29篇
  2002年   37篇
  2001年   7篇
  2000年   4篇
  1999年   9篇
  1998年   6篇
  1997年   6篇
  1996年   6篇
  1995年   7篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1990年   3篇
  1989年   7篇
  1988年   1篇
  1987年   4篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1962年   1篇
排序方式: 共有793条查询结果,搜索用时 209 毫秒
171.
Little is known about the effects of altering sphingolipid (SL) acyl chain structure and composition on the biophysical properties of biological membranes. We explored the biophysical consequences of depleting very long acyl chain (VLC) SLs in membranes prepared from lipid fractions isolated from a ceramide synthase 2 (CerS2)-null mouse, which is unable to synthesize C22-C24 ceramides. We demonstrate that ablation of CerS2 has different effects on liver and brain, causing a significant alteration in the fluidity of the membrane and affecting the type and/or extent of the phases present in the membrane. These changes are a consequence of the depletion of VLC and unsaturated SLs, which occurs to a different extent in liver and brain. In addition, ablation of CerS2 causes changes in intrinsic membrane curvature, leading to strong morphological alterations that promote vesicle adhesion, membrane fusion, and tubule formation. Together, these results show that depletion of VLC-SLs strongly affects membrane biophysical properties, which may compromise cellular processes that critically depend on membrane structure, such as trafficking and sorting.  相似文献   
172.
Summary of the in vitro data support a beneficial effect of cranberry or its proanthocyanin constituents by blocking adhesion to and biofilm formation on target tissues of pathogens. In vivo data partially support these beneficial effects. Consumption of various cranberry products benefited young and elderly females in preventing urinary tract infections, and in conjunction with antibiotic treatment in eradicating Helicobacter pylori infections in women. Mouthwash supplemented with an isolated cranberry derivative reduced significantly the caryogenic mutans streptococci. None of the mice infected intranasal with lethal dose of influenza virus and treated with cranberry fraction died after two weeks. Further studies should focus on the active cranberry component as supplement for food and other products especially where whole juice or powder cannot be used.  相似文献   
173.
Potato (Solanum tuberosum) tuber, a swollen underground stem, is used as a model system for the study of dormancy release and sprouting. Natural dormancy release, at room temperature, is initiated by tuber apical bud meristem (TAB-meristem) sprouting characterized by apical dominance (AD). Dormancy is shortened by treatments such as bromoethane (BE), which mimics the phenotype of dormancy release in cold storage by inducing early sprouting of several buds simultaneously. We studied the mechanisms governing TAB-meristem dominance release. TAB-meristem decapitation resulted in the development of increasing numbers of axillary buds with time in storage, suggesting the need for autonomous dormancy release of each bud prior to control by the apical bud. Hallmarks of programmed cell death (PCD) were identified in the TAB-meristems during normal growth, and these were more extensive when AD was lost following either extended cold storage or BE treatment. Hallmarks included DNA fragmentation, induced gene expression of vacuolar processing enzyme1 (VPE1), and elevated VPE activity. VPE1 protein was semipurified from BE-treated apical buds, and its endogenous activity was fully inhibited by a cysteinyl aspartate-specific protease-1-specific inhibitor N-Acetyl-Tyr-Val-Ala-Asp-CHO (Ac-YVAD-CHO). Transmission electron microscopy further revealed PCD-related structural alterations in the TAB-meristem of BE-treated tubers: a knob-like body in the vacuole, development of cytoplasmic vesicles, and budding-like nuclear segmentations. Treatment of tubers with BE and then VPE inhibitor induced faster growth and recovered AD in detached and nondetached apical buds, respectively. We hypothesize that PCD occurrence is associated with the weakening of tuber AD, allowing early sprouting of mature lateral buds.  相似文献   
174.
The universal importance of iron, its high toxicity, and complex chemistry present a challenge to biological systems in general and to protected compartments in particular. The high mitotic rate and avid mitochondriogenesis of developing male germ cells imply high iron requirements. Yet access to germ cells is tightly regulated by the blood-testis barrier that protects the meiotic and postmeiotic germ cells. To elucidate how iron is supplied to developing male germ cells, we analyzed iron deposition and iron transport proteins in testes of mice with iron overload and with genetic ablation of the iron regulators Hfe and iron regulatory protein 2. Iron accumulated mainly around seminiferous tubules, and only small amounts localized within the seminiferous tubules. The localization and regulation of proteins involved in iron import, storage, and export such as transferrin, transferrin receptor, the divalent metal transporter-1, cytosolic ferritin, and ferroportin strongly support a model of a largely autonomous iron cycle within seminiferous tubules. We show evidence that ferritin secretion from Sertoli cells may play an important role in iron acquisition of primary spermatocytes. During spermatogenic development iron is carried along from primary spermatocytes to spermatids, and from spermatids iron is recycled to the apical compartment of Sertoli cells, which traffic it back to a new generation of spermatocytes. Losses are replenished by the peripheral circulation. Such an internal iron cycle essentially detaches the iron homeostasis within the seminiferous tubule from the periphery and protects developing germ cells from iron fluctuations. This model explains how compartmentalization can optimize cellular and systemic nutrient homeostasis.  相似文献   
175.
176.
Endogenous glucocorticoid (GC) activation is regulated by the intracellular GC-activating and -inactivating enzymes 11β-hydroxysteroid dehydrogenase (11β-HSD)1 and 11β-HSD2, respectively, that catalyze interconversion of inert cortisone and its bioactive metabolite cortisol. Because endogenous GCs are critically implicated in suppressing the asthmatic state, this study examined the roles of the 11β-HSD enzymes in regulating GC activation and bronchoprotection during proasthmatic stimulation. Airway hyperresponsiveness to methacholine and inflammation were assessed in rabbits following inhalation of the proasthmatic/proinflammatory cytokine IL-13 with and without pretreatment with the 11β-HSD inhibitor carbenoxolone (CBX). Additionally, IL-13-induced changes in 11β-HSD isozyme expression and GC metabolism were examined in epithelium-intact and -denuded tracheal segments and peripheral lung tissues. Finally, the effects of pretreatment with CBX or 11β-HSD2-targeted siRNAs were investigated with respect to cortisol prevention of IL-13-induced airway constrictor hyperresponsiveness and eotaxin-3 production by airway epithelial cells. IL-13-exposed rabbits exhibited airway hyperresponsiveness, inflammation, and elevated bronchoalveolar lung fluid levels of eotaxin-3. These responses were inhibited by pretreatment with CBX, suggesting a permissive proasthmatic role for 11β-HSD2. Supporting this concept, extended studies demonstrated that 1) IL-13-treated tracheal epithelium and peripheral lung tissues exhibit upregulated 11β-HSD2 activity, 2) the latter impairs cortisone-induced cortisol accumulation and the ability of administered cortisol to prevent both IL-13-induced heightened airway contractility and eotaxin-3 release from epithelial cells, and 3) these proasthmatic responses are prevented by cortisol administration in the presence of 11β-HSD2 inhibition. Collectively, these data demonstrate that the proasthmatic effects of IL-13 are enabled by impaired endogenous GC activation in the lung that is attributed to upregulation of 11β-HSD2 in the pulmonary epithelium.  相似文献   
177.
Human immunodeficiency virus 1 gp41 folds into a six-helix bundle whereby three C-terminal heptad repeat regions pack in an anti-parallel manner against the coiled-coil formed by three N-terminal heptad repeats (NHR). Peptides that inhibit bundle formation contributed significantly to the understanding of the entry mechanism of the virus. DP178, which partially overlaps C-terminal heptad repeats, prevents bundle formation through an undefined mechanism; additionally it has been suggested to bind other ENV regions and arrest fusion in an unknown manner. We used two structurally altered DP178 peptides; in each, two sequential amino acids were substituted into their d configuration, d-SQ in the hydrophilic N-terminal region and d-LW in the hydrophobic C-terminal. Importantly, we generated an elongated NHR peptide, N54, obtaining the full N-helix docking site for DP178. Interestingly, d-LW retained wild type fusion inhibitory activity, whereas d-SQ exhibited significantly reduced activity. In correlation with the inhibitory data, CD spectroscopy and fluorescence studies revealed that all the DP178 peptides interact with N54, albeit with different stabilities of the bundles. We conclude that strong binding of DP178 N-terminal region to the endogenous NHR, without significant contribution of the C-terminal sequence of DP178 to core formation, is vital for DP178 inhibition. The finding that d-amino acid incorporation in the C terminus did not affect activity or membrane binding as revealed by surface plasmon resonance correlates with an additional membrane binding site, or membrane anchoring role, for the C terminus, which works synergistically with the N terminus to inhibit fusion.  相似文献   
178.
B and T lymphocyte attenuator (BTLA) is a recently identified inhibitory receptor expressed by B and T cells. We previously identified two tyrosine-containing signaling motifs in the cytoplasmic domain of BTLA that interact with the SHP-1 and SHP-2 phosphatases. BTLA has a third conserved tyrosine-containing motif within the cytoplasmic domain, similar in sequence to a Grb-2 recruitment site. To identify specific interacting proteins that would be recruited to this motif, we carried out an unbiased screen by using synthetic peptides in active (e.g., phosphotyrosil-containing) or control (e.g., non-phosphorylated) forms as baits. Using mass spectrometry, we identified two specific interacting proteins, Grb-2 and the p85 subunit of PI3K. Further, we demonstrate that the interaction with Grb-2 is direct, whereas the recruitment of the p85 subunit by BTLA phosphotyrosile-containing peptides may be indirect via its association with Grb-2. These findings may provide biochemical basis for previously unexplained actions of BTLA.  相似文献   
179.
Bacterial glutamate decarboxylase (GAD) is a homohexameric enzyme of about 330 kDa. Plant GAD differs from the bacterial enzyme in having a C-terminal extension of 33 amino acids within which resides a calmodulin (CaM)-binding domain. In order to assess the role of the C-terminal extension in the formation of GAD complexes and in activation by Ca2+/CaM, we examined complexes formed with the purified full-length recombinant petunia GAD expressed in E. coli, and with a 9 amino acid C-terminal deletion mutant (GADDeltaC9). Size exclusion chromatography revealed that the full-length GAD formed complexes of about 580 kDa and 300 kDa in the absence of Ca2+/CaM, whereas in the presence of Ca2+/CaM all complexes shifted to approximately 680 kDa. With deletion of 9 amino acids from the C-terminus (KKKKTNRVC(500)), the ability to bind CaM in the presence of Ca2+, and to purify it by CaM-affinity chromatography was retained, but the formation of GAD complexes larger than 340 kDa and enzyme activation by Ca2+/CaM were completely abolished. Hence, responsiveness to Ca2+/CaM is associated with the formation of protein complexes of 680 kDa, and requires some or all of the nine C-terminal amino acid residues. We suggest that evolution of plant GAD from a bacterial ancestral enzyme involved the formation of higher molecular weight complexes required for activation by Ca2+/CaM.  相似文献   
180.
Priel A  Selak S  Lerma J  Stern-Bach Y 《Neuron》2006,52(6):1037-1046
A prominent feature of ionotropic glutamate receptors from the AMPA and kainate subtypes is their profound desensitization in response to glutamate-a process thought to protect the neuron from overexcitation. In AMPA receptors, it is well established that desensitization results from rearrangements of the interface formed between agonist-binding domains of adjacent subunits; however, it is unclear how this mechanism applies to kainate receptors. Here we show that stabilization of the binding domain dimer by the generation of intermolecular disulfide bonds apparently blocked desensitization of the kainate receptor GluR6. This result establishes a common desensitization mechanism in both AMPA and kainate receptors. Surprisingly, however, surface expression of these nondesensitizing mutants was drastically reduced and did not depend on channel activity. Therefore, in addition to its role at the synapse, we now propose an intracellular role for desensitization in controlling maturation and trafficking of glutamate receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号