首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   783篇
  免费   75篇
  2022年   7篇
  2021年   18篇
  2020年   5篇
  2019年   15篇
  2018年   15篇
  2017年   10篇
  2016年   16篇
  2015年   44篇
  2014年   42篇
  2013年   58篇
  2012年   81篇
  2011年   67篇
  2010年   37篇
  2009年   34篇
  2008年   44篇
  2007年   46篇
  2006年   40篇
  2005年   38篇
  2004年   36篇
  2003年   30篇
  2002年   40篇
  2001年   9篇
  2000年   6篇
  1999年   9篇
  1998年   6篇
  1997年   7篇
  1996年   6篇
  1995年   8篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   8篇
  1987年   4篇
  1985年   3篇
  1984年   4篇
  1982年   2篇
  1981年   4篇
  1979年   2篇
  1978年   5篇
  1977年   6篇
  1976年   4篇
  1975年   3篇
  1973年   2篇
  1972年   3篇
  1970年   2篇
  1967年   2篇
  1966年   2篇
  1962年   1篇
排序方式: 共有858条查询结果,搜索用时 15 毫秒
71.
SUMMARY: This synopsis provides an overview of array-based comparative genomic hybridization data display, abstraction and analysis using CGHAnalyzer, a software suite, designed specifically for this purpose. CGHAnalyzer can be used to simultaneously load copy number data from multiple platforms, query and describe large, heterogeneous datasets and export results. Additionally, CGHAnalyzer employs a host of algorithms for microarray analysis that include hierarchical clustering and class differentiation. AVAILABILITY: CGHAnalyzer, the accompanying manual, documentation and sample data are available for download at http://acgh.afcri.upenn.edu. This is a Java-based application built in the framework of the TIGR MeV that can run on Microsoft Windows, Macintosh OSX and a variety of Unix-based platforms. It requires the installation of the free Java Runtime Environment 1.4.1 (or more recent) (http://www.java.sun.com).  相似文献   
72.
Two toxic, microcystin-producing, Microcystis sp. strains KLL MG-K and KLL MB-K were isolated as single colonies on agar plates from Lake Kinneret, Israel. Two non-toxic subcultures, MG-J and MB-J spontaneously succeeded the toxic ones under laboratory conditions. Southern analyses showed that MG-J and MB-J are lacking at least 34 kb of the mcy region, encoding the microcystin synthetase. Analyses of the 16S rRNA genes, the intergenic spacer region between cpcB and cpcA and the patterns of the polymerase chain reaction products of randomly amplified polymorphic DNA and highly iterated palindrome, and presence of mobile DNA elements did not allow unequivocal distinction between toxic and non-toxic subcultures. Laboratory and field experiments indicated an advantage of the toxic strain over its non-toxic successor. When grown separated by a membrane, which allowed passage of the media but not the cells, MG-K severely inhibited the growth of MG-J. Furthermore, when MG strains were placed in dialysis bags in Lake Kinneret during the season in which Microcystis is often observed, cells of MG-J lysed, whereas MG-K survived. Mechanisms whereby the non-toxic subcultures emerged and prevailed over the corresponding toxic ones under laboratory conditions, as well as a possible role of microcystin under natural conditions, are discussed.  相似文献   
73.
Many lines of evidence suggest that oxidative stress resulting in reactive oxygen species (ROS) generation and inflammation play a pivotal role in the age-associated cognitive decline and neuronal loss in neurodegenerative diseases including Alzheimer's (AD), Parkinson's (PD) and Huntington's diseases. One cardinal chemical pathology observed in these disorders is the accumulation of iron at sites where the neurons die. The buildup of an iron gradient in conjunction with ROS (superoxide, hydroxyl radical and nitric oxide) are thought to constitute a major trigger in neuronal toxicity and demise in all these diseases. Thus, promising future treatment of neurodegenerative diseases and aging depends on availability of effective brain permeable, iron-chelatable/radical scavenger neuroprotective drugs that would prevent the progression of neurodegeneration. Tea flavonoids (catechins) have been reported to possess potent iron-chelating, radical-scavenging and anti-inflammatory activities and to protect neuronal death in a wide array of cellular and animal models of neurological diseases. Recent studies have indicated that in addition to the known antioxidant activity of catechins, other mechanisms such as modulation of signal transduction pathways, cell survival/death genes and mitochondrial function, contribute significantly to the induction of cell viability. This review will focus on the multifunctional properties of green tea and its major component (-)-epigallocatechin-3-gallate (EGCG) and their ability to induce neuroprotection and neurorescue in vitro and in vivo. In particular, their transitional metal (iron and copper) chelating property and inhibition of oxidative stress.  相似文献   
74.
75.
76.
The Zap70 protein tyrosine kinase controls TCR-linked signal transduction pathways and is critical for T cell development and responsiveness. Following engagement of TCR, the Zap70 undergoes phosphorylation on multiple tyrosine residues that are implicated in the regulation of its catalytic activity and interaction with signaling effector molecules downstream of the TCR. We have shown previously that the CT10 regulator of kinase II (CrkII) adapter protein interacts with tyrosine-phosphorylated Zap70 in TCR-engaged T cells, and now extend these studies to show that Tyr315 in the Zap70 interdomain B region is the site of interaction with CrkII. A point mutation of Tyr315 (Y315F) eliminated the CrkII-Zap70 interaction capacity. Phosphorylation of Tyr315 and Zap70 association with CrkII were both dependent upon the Lck protein tyrosine kinase. Previous studies demonstrated the Tyr315 is the Vav-Src homology 2 (SH2) binding site, and that replacement of Tyr315 by Phe impaired the function of Zap70 in TCR signaling. However, fluorescence polarization-based binding studies revealed that the CrkII-SH2 and the Vav-SH2 bind a phosphorylated Tyr315-Zap70-derived peptide with affinities of a similar order of magnitude (Kd of 2.5 and 1.02 microM, respectively). The results suggest therefore that the biological functions attributed to the association of Zap70 with Vav following T cell activation may equally reflect the association of Zap70 with CrkII, and further support a regulatory role for CrkII in the TCR-linked signal transduction pathway.  相似文献   
77.
New insights into the mechanism of homologous recombination in yeast   总被引:7,自引:0,他引:7  
Aylon Y  Kupiec M 《Mutation research》2004,566(3):231-248
Genome stability is of primary importance for the survival and proper functioning of all organisms. Double-strand breaks (DSBs) arise spontaneously during growth, or can be created by external insults. Repair of DSBs by homologous recombination provides an efficient and fruitful pathway to restore chromosomal integrity. Exciting new work in yeast has lately provided insights into this complex process. Many of the proteins involved in recombination have been isolated and the details of the repair mechanism are now being unraveled at the molecular level. In this review, we focus on recent studies which dissect the recombinational repair of a single broken chromosome. After DSB formation, a decision is made regarding the mechanism of repair (recombination or non-homologous end-joining). This decision is under genetic control. Once committed to the recombination pathway, the broken chromosomal ends are resected by a still unclear mechanism in which the DNA damage checkpoint protein Rad24 participates. At this stage several proteins are recruited to the broken ends, including Rad51p, Rad52p, Rad55p, Rad57p, and possibly Rad54p. A genomic search for homology ensues, followed by strand invasion, promoted by the Rad51 filament with the participation of Rad55p, Rad57p and Rad54p. DNA synthesis then takes place, restoring the resected ends. Crossing-over formation depends on the length of the homologous recombining sequences, and is usually counteracted by the activity of the mismatch repair system. Given the conservation of the repair mechanisms and genes throughout evolution, these studies have profound implications for other eukaryotic organisms.  相似文献   
78.
79.
The development and maintenance of myelinated nerves in the PNS requires constant and reciprocal communication between Schwann cells and their associated axons. However, little is known about the nature of the cell-surface molecules that mediate axon-glial interactions at the onset of myelination and during maintenance of the myelin sheath in the adult. Based on the rationale that such molecules contain a signal sequence in order to be presented on the cell surface, we have employed a eukaryotic-based, signal-sequence-trap approach to identify novel secreted and membrane-bound molecules that are expressed in myelinating and non-myelinating Schwann cells. Using cDNA libraries derived from dbcAMP-stimulated primary Schwann cells and 3-day-old rat sciatic nerve mRNAs, we generated an extensive list of novel molecules expressed in myelinating nerves in the PNS. Many of the identified proteins are cell-adhesion molecules (CAMs) and extracellular matrix (ECM) components, most of which have not been described previously in Schwann cells. In addition, we have identified several signaling receptors, growth and differentiation factors, ecto-enzymes and proteins that are associated with the endoplasmic reticulum and the Golgi network. We further examined the expression of several of the novel molecules in Schwann cells in culture and in rat sciatic nerve by primer-specific, real-time PCR and in situ hybridization. Our results indicate that myelinating Schwann cells express a battery of novel CAMs that might mediate their interactions with the underlying axons.  相似文献   
80.
To what extent the secretory pathway is regulated by cellular signaling is unknown. In this study, we used RNA interference to explore the function of human kinases and phosphatases in controlling the organization of and trafficking within the secretory pathway. We identified 122 kinases/phosphatases that affect endoplasmic reticulum (ER) export, ER exit sites (ERESs), and/or the Golgi apparatus. Numerous kinases/phosphatases regulate the number of ERESs and ER to Golgi protein trafficking. Among the pathways identified, the Raf–MEK (MAPK/ERK [extracellular signal-regulated kinase] kinase)–ERK cascade, including its regulatory proteins CNK1 (connector enhancer of the kinase suppressor of Ras-1) and neurofibromin, controls the number of ERESs via ERK2, which targets Sec16, a key regulator of ERESs and COPII (coat protein II) vesicle biogenesis. Our analysis reveals an unanticipated complexity of kinase/phosphatase-mediated regulation of the secretory pathway, uncovering a link between growth factor signaling and ER export.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号