首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   23篇
  2022年   2篇
  2021年   3篇
  2019年   4篇
  2018年   1篇
  2017年   2篇
  2016年   7篇
  2015年   14篇
  2014年   12篇
  2013年   13篇
  2012年   22篇
  2011年   19篇
  2010年   9篇
  2009年   9篇
  2008年   13篇
  2007年   17篇
  2006年   17篇
  2005年   11篇
  2004年   6篇
  2003年   6篇
  2002年   10篇
  2001年   6篇
  2000年   10篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1994年   3篇
  1993年   2篇
  1992年   8篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   4篇
  1986年   6篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   6篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1975年   3篇
  1974年   2篇
  1971年   2篇
  1968年   1篇
  1966年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有299条查询结果,搜索用时 15 毫秒
81.
The biosynthetic shikimate pathway consists of seven enzymes that catalyze sequential reactions to generate chorismate, a critical branch point in the synthesis of the aromatic amino acids. The third enzyme in the pathway, dehydroquinate dehydratase (DHQD), catalyzes the dehydration of 3-dehydroquinate to 3-dehydroshikimate. We present three crystal structures of the type I DHQD from the intestinal pathogens Clostridium difficile and Salmonella enterica. Structures of the enzyme with substrate and covalent pre- and post-dehydration reaction intermediates provide snapshots of successive steps along the type I DHQD-catalyzed reaction coordinate. These structures reveal that the position of the substrate within the active site does not appreciably change upon Schiff base formation. The intermediate state structures reveal a reaction state-dependent behavior of His-143 in which the residue adopts a conformation proximal to the site of catalytic dehydration only when the leaving group is present. We speculate that His-143 is likely to assume differing catalytic roles in each of its observed conformations. One conformation of His-143 positions the residue for the formation/hydrolysis of the covalent Schiff base intermediates, whereas the other conformation positions the residue for a role in the catalytic dehydration event. The fact that the shikimate pathway is absent from humans makes the enzymes of the pathway potential targets for the development of non-toxic antimicrobials. The structures and mechanistic insight presented here may inform the design of type I DHQD enzyme inhibitors.  相似文献   
82.
Viruses employ various means to evade immune detection. Reduction of CD8(+) T cell epitopes is one of the common strategies used for this purpose. Hepatitis B virus (HBV), a member of the Hepadnaviridae family, has four open reading frames, with about 50% overlap between the genes they encode. We computed the CD8(+) T cell epitope density within HBV proteins and the mutations within the epitopes. Our results suggest that HBV accumulates escape mutations that reduce the number of epitopes. These mutations are not equally distributed among genes and reading frames. While the highly expressed core and X proteins are selected to have low epitope density, polymerase, which is expressed at low levels, does not undergo the same selection. In overlapping regions, mutations in one protein-coding sequence also affect the other protein-coding sequence. We show that mutations lead to the removal of epitopes in X and surface proteins even at the expense of the addition of epitopes in polymerase. The total escape mutation rate for overlapping regions is lower than that for nonoverlapping regions. The lower epitope replacement rate for overlapping regions slows the evolutionary escape rate of these regions but leads to the accumulation of mutations more robust in the transfer between hosts, such as mutations preventing proteasomal cleavage into epitopes.  相似文献   
83.
Cystine disulfide bond is a common feature in numerous biologically active peptides and proteins and accordingly its replacement by various surrogates presents a potential route to obtain analogs with improved pharmacokinetic characteristics. The purpose of the present study was to assess whether an azo-bridge can serve as such a surrogate. In view of the marked clinical significance of somatostatin and the brain natriuretic peptide (BNP) we choose these peptides as a model. Three cyclic-azo somatostatin analogs and three cyclic-azo BNP analogs were effectively prepared in solution through azo bond formation between p-amino phenylalanine and His or Tyr residues that were positioned in the peptide sequences in place of the native Cys residues. The peptides binding affinities to the sst? and ANP-receptor (NPR-A) expressed on rat acinar pancreating carcinoma AR4-2J cell membranes and HeLa cells, respectively, were examined. The somatostatin analogs displayed good to moderate affinities to the rat sst? in the nM range with best results obtained with peptide 2, that is, IC?? = 8.1 nM. Molecular dynamics simulations on these peptides suggests on a correlation between the observed binding potencies and the degree of conformational space overlapping with that of somatostatin. The BNP analogs exhibited binding affinities to the NPR-A in the nM range with best results obtained with BNP-1, that is, IC?? = 60 nM.  相似文献   
84.
When cardiomyocytes were subjected to hypoxia, tumor necrosis factor-α (TNF-α; 3-50 ng/ml) or adenosine (1-100 μM), decreased hypoxic damage as was detected by lactate dehydrogenase (LDH) release, MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) absorbance, ROS (reactive oxygen species) measurement or desmin immunostaining. This cardioprotection was not prevented in TNF-α-treated cultures by 5-hydroxydecanoic acid (5-HD). Our aim was to elucidate whether adenosine and TNF-α mediate a similar protective mechanism against hypoxia in primary heart cultures and in H9c2 cardiomyocytes. Adenosine and TNF-α are known for their negative inotropic effects on the heart. We have suggested that deoxyglucose uptake reflects heart contractility in cell cultures; therefore, we assayed its accumulation under various conditions. Treatment for 20 min with adenosine, R-PIA [(−)-N(6)-phenylisopropyladenosine] (10 μM), or TNF-α reduced 3H-deoxyglucose uptake in primary heart cultures and also in H9c2 cardiomyocytes by 30-50%. Isoproterenol accelerated 3H-deoxyglucose uptake by 50%. Adenosine, R-PIA, or TNF-α attenuated the stimulatory effect of isoproterenol on 3H-deoxyglucose uptake to control levels. Hypoxia reduced 3H-deoxyglucose uptake by 50%, as in the treatment of the hypoxic cultures with TNF-α or adenosine. Glibenclamide (2 μM), 5-HD (300 μM), or diazoxide (50 μM) increased 3H-deoxyglucose uptake by 50-80%. Adenosine (100 μM) and TNF-α (50 ng/ml) stimulated 86Rb efflux. Glibenclamide attenuated this effect. We demonstrate that TNF-α, like adenosine, accelerated Ca2+ uptake into the sarcoplasmic reticulum (SR) by 50-100% and therefore prevented cardiomyocyte Ca2+ overload. Our findings further suggest that TNF-α, as well as adenosine, may mediate an adaptive effect in the heart by preventing Ca2+ overload via activation of SR Ca-ATPase (SERCA2a).  相似文献   
85.
We have modified the flavor and aroma of tomatoes by expressing the Ocimum basilicum geraniol synthase gene under the control of the tomato ripening-specific polygalacturonase promoter. A majority of untrained taste panelists preferred the transgenic fruits over controls. Monoterpene accumulation was at the expense of reduced lycopene accumulation. Similar approaches may be applicable for carotenoid-accumulating fruits and flowers of other species.  相似文献   
86.
A universal RNAi-based logic evaluator that operates in mammalian cells   总被引:5,自引:0,他引:5  
Molecular automata that combine sensing, computation and actuation enable programmable manipulation of biological systems. We use RNA interference (RNAi) in human kidney cells to construct a molecular computing core that implements general Boolean logic to make decisions based on endogenous molecular inputs. The state of an endogenous input is encoded by the presence or absence of 'mediator' small interfering RNAs (siRNAs). The encoding rules, combined with a specific arrangement of the siRNA targets in a synthetic gene network, allow direct evaluation of any Boolean expression in standard forms using siRNAs and indirect evaluation using endogenous inputs. We demonstrate direct evaluation of expressions with up to five logic variables. Implementation of the encoding rules through sensory up- and down-regulatory links between the inputs and siRNA mediators will allow arbitrary Boolean decision-making using these inputs.  相似文献   
87.
88.
The mammalian immune system and the nervous system coevolved under the influence of cellular and environmental stress. Cellular stress is associated with changes in immunity and activation of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, a key component of innate immunity. Here we show that α7 nicotinic acetylcholine receptor (α7 nAchR)-signaling inhibits inflammasome activation and prevents release of mitochondrial DNA, an NLRP3 ligand. Cholinergic receptor agonists or vagus nerve stimulation significantly inhibits inflammasome activation, whereas genetic deletion of α7 nAchR significantly enhances inflammasome activation. Acetylcholine accumulates in macrophage cytoplasm after adenosine triphosphate (ATP) stimulation in an α7 nAchR-independent manner. Acetylcholine significantly attenuated calcium or hydrogen oxide–induced mitochondrial damage and mitochondrial DNA release. Together, these findings reveal a novel neurotransmitter-mediated signaling pathway: acetylcholine translocates into the cytoplasm of immune cells during inflammation and inhibits NLRP3 inflammasome activation by preventing mitochondrial DNA release.  相似文献   
89.
In anaphase, sister chromatids separate abruptly and are then segregated by the mitotic spindle. The protease separase triggers sister separation by cleaving the Scc1/Mcd1 subunit of the cohesin ring that holds sisters together. Polo-kinase phosphorylation of Scc1 promotes its cleavage, but the underlying regulatory circuits are unclear. We developed a separase biosensor in Saccharomyces cerevisiae that provides a quantitative indicator of cohesin cleavage in single cells. Separase is abruptly activated and cleaves most cohesin within 1?min, after which anaphase begins. Cohesin near centromeres and telomeres is cleaved at the same rate and time. Protein phosphatase PP2A(Cdc55) inhibits cohesin cleavage by counteracting polo-kinase phosphorylation of Scc1. In early anaphase, the previously described separase inhibition of PP2A(Cdc55) promotes cohesin cleavage. Thus, separase acts directly on Scc1 and also indirectly, through inhibition of PP2A(Cdc55), to stimulate cohesin cleavage, providing a feedforward loop that may contribute to a robust and timely anaphase.  相似文献   
90.
Synthetic biology applications call for efficient methods to generate large gene cassettes that encode complex gene circuits in order to avoid simultaneous delivery of multiple plasmids encoding individual genes. Multiple methods have been proposed to achieve this goal. Here, we describe a novel protocol that allows one-step cloning of up to four gene-size DNA fragments, followed by a second assembly of these concatenated sequences into large circular DNA. The protocols described here comprise a simple, cheap and fast solution for routine construction of cassettes with up to 10 gene-size components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号